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1. Introduction.TheMain Results

Let C[[x1, . . . ,xn]] (brie£y C [[x]], where x� t(x1, . . . ,xn) is the vector
of indeterminates) be the ring of formal power series in n indeter-
minates x1, . . . ,xn with complex coe¤cients.We consider in this paper
formal power series transformations F by which we understand auto-
morphisms F of C[[x]] which are continuous with respect to the order
topology (i.e., order preserving) and leave every element of the ground
¢eld C ¢xed. It is well known that these automorphisms F are in 1ÿ1
correspondence to the images F�x� � Ax� P�x� of x. Here A runs
through the matrices of GL (n,C), and P�x� is an n-tuple of formal
power series with ord�P� � 2. Moreover, these automorphisms form a
group ÿ under composition �which is, in the above mentioned picture,
represented by substitution of one n-tupel Ax�P�x� 2 C��x�� into
another.
F is called iterable (embeddable), if there exists a family (Ft)t2C in ÿ such

that

�T� Ft � Fs � Ft�s; t; s 2 C;

�E� F1 � F:



(T ) is nothing but the famous translation equation, (E ) is the embedding
condition. (Ft)t2C is then clearly a group with operation �, called iteration
(group) of F. In general, such an iteration does not exist for a given F.
The problem of ¢nding an embedding (iteration) of a selfmapping of a

given set can be studied inmuchmore general situations and is one of the
main problems of iteration theory (see e.g. [19], [20]). The above men-
tioned iteration problem in ÿ was studied in detail by several authors.
We refer the reader to the survey articles [9], [10], [11], [16], as well as to
[1], [2], [4]^[7], [18].
In a series of papers ([12], [14], [15]) we investigated how iterable (and

also noniterable) power series tranformations are distributed locally in a
neighbourhood of a givenF2ÿ, where neighbourhood is understood in
the sense of the weak topology (coe¤cientwise topology on C[[x]], resp.
ÿ).Nowwe are interested in the same type of problems, but the neighbor-
hoods of the given F2ÿ are those in the socalled order topology (strong
topology).
The order topology on C[[x1, . . . ,xn]] is described by introducing the

sets

UN��� :� f	 2 C��x��jord��ÿ	� > Ng
as the members of a basis of open neighborhoods of �2C[[x]], where
N runs through N. This leads then to the product topology on the
space (C[[x]])n, and by identifying F2ÿ with F�x� � Ax � P�x� 2
�C��x���n� and by restricting everything to ÿ we get the order topology
(strong topology) on ÿ.This topology can be introduced by a metric, and
has therefore almost all good properties.The following basic results are
easy to prove.

Lemma1. (i)Themapping fromÿ�ÿ toÿ, de¢ned by (F,G ) 7!F �G, is contin-
uous. (ii ) Themapping from ÿ to ÿ, de¢ned by F 7!Fÿ1, is continuous.
Proof: (i ) If ��1; � � � ; �n� 2 Nn

0, let j�j :� �1� � � � � �n, and x� :�
x�11 . . .x�nn . We consider F2ÿ as F�x� � Ax� P�x� 2 �C��x���n. Let
ak,�, bk,�, ck,� be the coe¤cients of x� in the k-th components Fk, Gk
(F �G )k (1�k�n) of F, G, F �G, respectively. Then ck,� is a (universal)
polynomial

ck;� � �k;��al;�; bl;�j1 � l � n; 1 � j�j � j�j�
in the coe¤cients al,�, bl,� ofF andG, where 1�l� n, j�j � j�j. Hence, if
for a certain N � 1; ord�Fÿ ~F � > N; ord�G ÿ ~G� > N, then we
have for the corresponding coe¤cients ~al;�;~bl;� of ~F ; ~G

~al;� � al;�; ~bl;� � bl;�; l � 1; . . . ; n; j�j � N;
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and therefore

ck;� � �k;��al;�; bl;�j1 � l � n; 1 � j�j � j�j� �
� �k;��~al;�;~bl;�j1 � l � n; 1 � j�j � j�j� � ~c k;�

for k�1, . . . , n, provided that j�j �N. From this we deduce
ord�F � G ÿ ~F � ~G � > N, establishing Lemma 1(i).
(ii)Fÿ1 is represented by an n-tuple of the form Fÿ1 � Aÿ1x�Q�x�, if
F�x� � Ax� P�x�.The coe¤cientdk,� ofx

� inQk�x� is represented by
a (universal) function

dk;� �  k;��A; al;�j1 � l � n; 2 � j�j � j�j�;
which is a rational function in the elements ofA2GL (n,C ) and a poly-
nomial in al,�. Hence, if ord�Fÿ ~F > N; �N � 1�, then, denoting
by ~a k;�; ~d k;� the coe¤cients of ~F and ~F ÿ1, respectively, we ¢nd

dk;� �  k;��A; al;�j1 � l � n; 2 � j�j � j�j� �
�  k;��A;~al;�j1 � l � n; 2 � j�j � j�j� � ~d k;�;

for k�1, . . . , n and j�j �N. Hence F 7!Fÿ1 is continuous in the order
topology. &

Lemma 2. (i ) (ÿ, �) is a topological group in the strong topology. (ii ) For each
T2ÿ the conjugation cT: ÿ!ÿ, cT(F ) :�Tÿ1 �F �T is an isomorphism of the
topological groupÿ.

Proof: Immediate consequence of Lemma 1.

As can be seen from the survey articles [9], [10], [11], [16], a basic tool in
solving the iteration problem in ÿ are the socalled semicanonical forms
(brie£y normal forms) of the elements of ÿ under conjugation. It is almost
obvious that iteration problems and their possible solutions are invariant
under conjugation. Sowe alwaysmay replace, for our purposes, a givenF
by one of its semicanonical forms (or a set of formal power series trans-
formations by their simultaneous conjugates under the same cT).We refer
the reader to the papers quoted above for details about normal forms and
their applications in solving the iteration problem.
We are now ready to sketch the type of problemswewill deal with. Let

F2ÿ. Under what conditions on F does there exist a neighbourhood
UN(F ) of F (in the strong topology) consisting entirely of iterable (or
entirely of noniterable) power series transformations?Under what condi-
tions on a givenF is there in each neighbourhood ofF an iterableG 6�F,
or a noniterableG 6�F, or are there in each neighbourhood both iterable
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and noniterable power series transformations? Is the limit of a convergent
series of iterable automorphisms always iterable?
In Section 2 we will discuss series in one indeterminate, and give a

rather complete answer.We can do this, since the semicanonical forms
in this case are well known.There are even strict trinomial normal forms
due to Scheinber ([7]) which we will also use in one place.
The main di¡erence between theweak and the strong topology^ as far

as our investigations are concerned-, seems to lie in the fact that there are
power series F(z)� �z�c2z2� � � � (they are indeed the nonembeddable
ones) with the property that they have strong neighborhoods which
consist of noniterable series. In the weak topology one can prove (in-
dependently of the number of indeterminates) that in each (weak)
neighbourhood of any given F2ÿ there are iterable automorphisms G,
di¡erent from F.
In Section 2 we will also show that in the 1-dimensional case the limit

of each convergent sequence of iterable series is iterable. The problem
remains open in higher dimensions. In the weak topology a convergent
sequence of iterable series need not have an iterable limit, not even in
dimension 1. These results concerning the distribution with respect to
the weak topology are proved in the papers [12], [14] and [15] quoted
above.
Our techniques yield some insight to a more detailed structure of con-

vergent sequences (in the 1-dimensional case). Roughly speaking, if the
limit F of a convergent sequence (Fl)l2N of formal power series is of the
formF(z)� �z�c2z2� � � �, where a) � is not a root of 1, or b)F(z) is not
iterable, or c) F(z)� z�c2z2� � � �, but F(z) 6� z, then almost all Fl's
(l� l0) are conjugate to F. Also, if almost all Fl's are iterable and � in the
limit F(z)� �z�c2z2� � � � is di¡erent from1, the same is true.
In the higher-dimensional case of the automorphism group ÿ

of C[x1, . . . ,xn] (n>1) our results are far from complete. Let
F 2 ÿ; F�x� � Ax� P�x�, where A 2 GL�n;C�; ord�P� � 2, and
where �1; . . . ; �n are the eigenvalues of A. Denote by R the set of rela-
tions �k � ��11 . . . ��nn ; 1 � k � n, with �i2N0, �1� � � � � �n� 2. IfR is
¢nite (possibly empty) thenwe can show that for an iterable [a noniterable]
F there exists a strong neighbourhoodUN(F ) which contains only itera-
ble [noniterable] automorhphisms. If R is ¢nite, then a convergent
sequence (F(l ))l2N of iterable [noniterable] F(l )'s has an iterable [noniter-
able] limit.
If no assumptions on the eigenvalues are imposed then we can only

prove that if F2ÿ is iterable [noniterable], then there is a sequence
(F(l ))l2N of iterable [noniterable] power series transformations conver-
ging to F and such that F 6�F(l ) for all l. If F2ÿ has a neighbourhood
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U(F ) such that each G2U(F )n{F} is iterable [noniterable], then F is
iterable [noniterable]. In this result we are able to replace the exceptional
set {F} by a somewhat larger set, but unfortunately up to now not
by a `big' set. Eventually, we will prove a result on semicanonical forms
N(l ) of the members F(l ) of a convergent sequence (F(l ))l2N in ÿ, but
weaker than similar results in Section 2 for the case n�1. Namely,
there is l02N such that for l� l0 each F(l ) can be represented as F�l� �
V ÿ1
�l� �N�l� �V�l�, where N(l ) is a semicanonical form of F(l ) , N

� liml!1N(l ) and V� liml!1V(l ) exist and liml!1F(l )�
Vÿ1 �N �Vwith the semicanonical formN.

2. Power SeriesTransformations in One Indeterminate

2.1. Problems of Distribution

We recall (see [12]) some basic results on semicanonical forms of power
series in one indeterminate and on the connection of iterability and nor-
mal forms. By Ewe denote the group of complex roots of 1.

Lemma 3. (i ) If F(z)� �z�c2z2� � � � , �2C� nE, then F is conjugate to
its linear part �z. (ii) If F (z)� �z�c2z2� � � � , �2E n {1}, and if
�� exp(2�i�/� ) with �, � 2Z,�>1, gcd(�, � )� 1, then Fis conjugate to a
semicanonical form

N�z� � �z�
X
��1

'�z
���1

which is, in general, not uniquely determined. If �z is a semicanonical form of F, then �z
is the only one. If, on the other hand, F has a semicanonical form N(z)�
�z�'�0 z�0��1� � � � , where �0�1, '�0��1 6�0, then for each semicanonical form
M(z) of F the seriesM(z)ÿ �zhas order �0� � 1. (iii)If F (z)� z� dkz

k� � � �,
where k� 2, dk 6� 0, then each conjugate Tÿ1�F �T of F has the same form
(Tÿ1�F �T ) (z)� z� ekzk� � � � , with ek 6� 0. &

Lemma 4. (i )Assumethat � 6�1andF(z)� � z�c2z2� � � �.ThenFis iterable
if and only if it is conjugate to its linearpart �z. Hence, if �2C�nE, then Fis always
iterable. If �2E n{1}, then Fis iterable i¡each semicanonical form is linear (i¡at least
onesemicanonical form is linear). (ii ) IfF(z)� z�dk zk� � � �with k� 2, dk 6� 0,
then Fis iterable. &

From these lemmas we deduce a survey on the local distribution of
formal series with respect to embeddability in the strong topology.
Theorems 1 and 2 are already contained in [12], but for reasons of
completeness we reproduce them here. For Theorem 2 we will give a
new, farther reaching, proof too.
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Theorem1. (i ) IfF(z)� �z����2 c�z
�,where �2C�nE, then eachsu¤ciently

small neighbourhood of F (in the order topology) contains only iterable series. (ii ) If
F(z)� z� � � � , then each su¤ciently small neighbourhood of F consists entirely of itera-
bleseries. (iii ) IfF(z)� �z� � � � , with �2En{1}, is iterable, then in eachneighbor-
hood of F there are iterablepowerseries, di¡erentfromF, as well as noniterable series. (iv)
IfF(z)� �z� � � � , with �2En{1}, is noniterable, then eachsu¤cientlysmallneigh-
bourhood of F consists entirely of noniterable series.

Proof: (i) Take the neighbourhoodU1(F).Then eachG2U1(F ) startswith
�z, where �2C�nE. Hence, according to Lemma 4(i), G is iterable.
(ii) Here each G in U1(F ) has the form z� � � �, so is either the identity
(hence iterable) or is iterable by Lemma 4 (ii).
(iii) Suppose now that F(z)� �z�c2z2 � � �, where �2En{1}, is iterable.
� can be represented as �� exp(2�i�/� ), with�, � 2Z, �>1, gcd(�,� )
� 1. According to Lemma 4(i) there is a T2ÿ, T (z)� z� t2z2� � � �,
such that (Tÿ1�F �T )(z)� �z. As we know (see Section 1), we may as-
sume for our purposes thatF(z)� �z. Consider ¢rst the sequence (Fn)n2N

with Fn(z)� �z�z n��1 for n2N. According to Lemmas 3 and 4, these
Fn are in semicanonical form and are not linear and also not linearizable.
Then, by Lemma 4, they are not iterable. Moreover, we have
limn!1Fn(z)�F(z)� �z. This shows that each neighbourhood of F
contains a series which is not iterable.
Consider now a sequence (Sn )n2N in ÿ, where Sn�z� � z� zkn , and

(kn)n2N is strictly increasing and, furthermore, zkn is not an additional
monomial with respect to the relation ���1� �, i.e. kn 6�1 (mod �), for
each n. If we calculate the series Gn :� Sÿ1n � F � Sn for the normal form
F(z)� �z, we ¢nd

Gn�z� � �z� ��kn ÿ ��zkn � � � � ;

where �kn ÿ � 6� 0. Hence Gn 6�F for each n, limn!1Gn(z)�F(z), and
Gn � Sÿ1n � F � Sn is iterable since it is conjugate to F.Therefore we have
constructed an iterable power series G, di¡erent from F, in each neigh-
bourhood of F.
(iv) The last case refers to a series F(z)� �z�c2z 2� � � �, where
�2E n{1}, and F is not iterable. Again, we may assume that F is already
a semicanonical form. So, if �� exp(2�i�/� ), �, � 2Z, �>1,
gcd(�, � )� 1, then by Lemmas 3 and 4

F�z� � �z� d�0��1z
�0��1 �

X
�>�0

d���1z��1;
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where �0�1 and d�0��1 6� 0.Then each series G 2 U�0��1�F� is of the
form

G�z� � �z� d�0��1z
�0��1 �

X
�>�0��1

g�z
�:

If we want to construct a semicanonical form of G, then, as is well
known from the theory of normal forms, we can achieve this through
conjugation by a transformation

V�z� � z�
X

�>�0��1
v�z

�;

since the (�0��1)-jet ofG is already in semicanonical formwith respect
to � (`Formales Ausfegen', cf. [3], ch. 3).This means that

�Vÿ1 � G �V��z� � �z� d�0��1z
�0��1 �

X
�>�0

~d���1z���1;

and since d�0��1 6� 0,Vÿ1�G �V and G are not iterable, according to
Lemma 4. &

Similar techniques allow us to show that in the case of one indetermi-
nate each convergent sequence of iterable power series has an iterable
limit (Theorem 1 shows that a sequence of noniterable series may have
an iterable limit).

Theorem 2. Let (Fl)l2N bea convergentsequence of iterablepowerseriestransforma-
tions in one indeterminate, and let F� limn!1Fl.Then Fis iterable.

Proof:We assume that the limit F of (Fl)l2N is F(z)� �z�c2z2� � � �. If
�2C�nE or ��1, then F is iterable by Lemma 4. So it su¤ces to con-
sider the case �2En {1}. Assume �� exp(2�i�/�), �, � 2Z, �>1,
gcd(�, � ) � 1. Then there is an index l0 such that for l� l0 Fl�z� �
�z� c�l�2 z2 � � � �, and each Fl is iterable by assumption.We assume now
that F is not iterable.Take any normal form of F:

�Tÿ1 � F � T��z� � �z�
X
��1

d���1z���1:

From Lemma 4 we know that there is an index �0�1 such that

�Tÿ1 � F � T��z� � �z� d�0��1z
�0��1 �

X
���0

d���1z���1;

where d�0��1 6� 0. Instead of F and (Fl)l2N we may considerTÿ1 �F �T
and the sequence (Tÿ1 �Fl �T )l2N of iterable transformations.Now, there
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is an l1�l0 such that for each l� l1

�Tÿ1 � Fl � T ��z� � �z� d�0��1z
�0��1 �

X
�>�0��1

~d �z
�;

with d�0��1 6� 0.We have already shown in the proofof Theorem1thatFl
is not iterable which is a contradiction to the assumption. Hence Fmust
be iterable. &

There is a di¡erent proof of Theorem 2 which, moreover, gives more
information on convergent sequences of iterable power series.We will
present it here.We again consider the case �2En{1}, �=exp(2�i�/�),
and use the same notation.

Theorem 2, alternative proof. Since each Fl is iterable, it is of the form
Fl�z� � T ÿ1l ��Tl�z�� for l� l0, whereTl�z� � z� t�l�2 z2 � � � �.The ser-
ies (Tl)l2N is, in general, not uniquely determined byFl. However, there is
for each Fl a unique normalized Tl, namely normalized by the condition

Tl�z� � z�
X
�>1

� 6�1�mod��

t�l�� z�;

i.e., by t�� 0 if ��1 (mod �) (see [13]).The coe¤cients t�l�� are universal
functions

t �l�� � ����; c �l�2 ; . . . ; c �l�� �;
rational in � and polynomial in the coe¤cients c �l�� of Fl.We see that
c �l�2 ; . . . ; c �l�m are the same as c2, . . . , cm for l�L(m), hence ����;

c�l�2 ; . . . ; c�l�� � � ����; c2; . . . ; c�� for ��m and l�L(m).This means that
liml!1 Tl�T exists, and T(z)� z+���2 t�z

�. Hence (see Section 1,
Lemma1)

F�z� � lim
l!1

T ÿ1l ��Tl�z�� � T ÿ1��T�z��;
and F is iterable. &

This proof shows in addition that, in the case under consideration,
Fl � T ÿ1l ��Tl�z�� for l� l0 , where liml!1 Tl=T exists and F�z� �
liml!1 T ÿ1l ��Tl�z�� � T ÿ1��T�z��.
Similar results hold in other cases. As a ¢rst result we present.

Theorem3.Let (Fl)l2N bea convergentsequenceofiterableseriesFl, letF� liml!1
and assume that F(z)� �z� � � � ,where � 6�1.Then, for su¤ciently large l(l� l0),
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there exists a sequence �Tl�l�l0 ;Tl�z� � z� � � � ; such that
a) liml!1 Tl�T (T(z) = z� � � �) exists,
b) Fl�z� � T ÿ1l ��Tl�z��,
c) F(z)�Tÿ1(�T(z)).

Proof: We already gave the proof for the case where �2E n {1}. As-
sume now that � 2 C_nE. It is obvious that for l � l0 Fl�z� � �z�
c�l�2 z2 � � � � : According to Lemma 3 there are transformations
Vl ; Vl�z� � z�P��2 v�l�� z�, such that Fl�z� � V ÿ1

l ��Vl�z��. The
Vl 's are unique, in fact, their coe¤cients v�l�� are universal functions
v�l�� �  ���; c�l�2 ; . . . ; c�l�� �, rational in �, polynomial in c�l�2 ; . . . ; c�l�� . To
eachm�1there is anL(m) such that c�l�� � c�, for 2���m and l�L(m).
Hence v�l�� �  ���; c�l�2 ; . . . ; c�l�� � �  ���; c2; . . . ; c�� for �� 2, . . . ,m, if
l�L(m). This means again that liml!1 Vl�V exists and F �
liml!1 Fl � V ÿ1��V �z��. &

2.2. Convergent Sequences

Theorem3 leads to the questionwhether in the case of power series trans-
formations in one indeterminate more details can be derived about the
structure of sequences (Fl )l2N inÿwhich converge in the order topology.
Let F be the limit of (Fl)l2N. If, e.g., F(z) = �z, where �2E n {1} (more
generally, if F is iterable and has a multiplier �2En{1}), then we have
already seen that F is the limit of a sequence of iterable series Gl, Gl 6�F,
and also the limit of a sequence of noniterable ones. Hence in this casewe
cannot expect to ¢nd more details about the structure of sequences con-
verging to F. The same happens if F(z) = z. But if �2E n{1}, F(z) =
�z� � � � , andF is noniterable, or in the case whereF(z) = z+ dkz

k� � � � ,
with dk 6� 0 for some k� 2, we will show a result about the sequences
(Fl)l2N, converging to F, which is very similar to Theorem 3. For this
purpose we need the trinomial normal forms of Scheinberg ([17]).

Theorem 4. Let (Fl)l2N be a convergent sequence, liml!1 Fl= F, and F(z) =
z�dnzn+ � � � , where n� 2, dn 6� 0. Let N(z) = z+ azn+ bz2nÿ1 be the
trinomial normal form of F, N= Sÿ1 �F �S, with some S(z)= z+ � � � 2ÿ (which
implies a= dn 6� 0). Then there exists an index l02N and a sequence
�Tl�l�l0 2 ÿ;Tl�z� � z� � � �, and a solution T, T(z) = z+ � � � , of F=
Tÿ1 �N �Tsuch that (i )liml!1Tl=T, and (ii) Fl � T ÿ1l �N � Tl, for all
l� l0.
Inparticular, for l� l0 , all Fl 's are conjugate to F.

Proof:There is an l0 such that, for l� l0 , Fl�z� � z� dnzn� d2nÿ1z2nÿ1�P
��2n d

�l�
� z�, if F�z� � z� dn zn � d2nÿ1z2nÿ1�

P
��2n d�z

�. ForF and
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each Fl, l� l0, there exist transformations T, T(z)� z� � � �, and
Tl,Tl(z)� z� � � �, such that

�T ÿ1 � F � T��z� � �T ÿ1l � Fl � Tl� � z� azn � bz2nÿ1;

with a� dn. A reformulation of the proof of Proposition 6 in [17] tells us,
how speci¢c solutions of these SchrÎder type equations T ÿ1 � F � T �
N,T ÿ1l � Fl � Tl � N can be constructed. In fact, thisT has the follow-
ing structure:

T�z� � z� t2z
2 � � � � � tnÿ1znÿ1 �

X
��1

tn��zn��;

where t� is a certain polynomial

t� � p��dn; dn�1; . . . ; dn��ÿ1�
for 2��� nÿ1, while, for ��1, tn� � is a certain polynomial

tn�� � pn���dn; dn�1; . . . ; d2nÿ1; d2n; . . . ; d2n��ÿ1�:
(tn may be chosen as 0, which we do.) Similarly,

Tl�z� � z� t2z
2 � � � � � tnÿ1znÿ1 �

X
��1

t�l�n��z
n��;

where
t�l�� � t� � p��dn; dn�1; . . . ; dn��ÿ1�

for 2��� nÿ1, t�l�n � 0, and for ��1
t�l�n�� � pn���dn; dn�1; . . . ; d2nÿ1; d

�l�
2n ; . . . ; d�l�2n��ÿ1�:

Since liml!1Fl�F, we deduce liml!1Tl�T. Moreover, for l� l0,
Fl and F have the same trinomial normal form. &

An analogue of Theorem 4 holds true in the case of convergent
sequences (Fl)l2N whose limit is not iterable. Hence F is of the form
�z�c2z2�� � �, where �2En{1}, say �� exp(2�i�/�), �, � 2Z, �>1,
gcd(�,� )� 1, and F is not linearizable.

Theorem 5. Let (Fl)l2N�ÿ be a convergentsequence with noniterable limit F.Then
there is an l0 and a sequence �Vl�l�l0 such that
(i ) liml!1Vl�Vexists,Vl (z)� z� � � � ,V(z)� z� � � � , and
(ii ) F � Vÿ1�N�V, Fl � Vÿ1l �N�Vl for l� l0 ,

whereNis the Scheinberg trinomial normal form of F.

Proof: There is an l0 such that for all l� l0 Fl is not iterable. Otherwise we
would have a subsequence of iterable series of (Fl)l2N, converging to F,
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andTheorem 2would imply thatF is also iterable. If l0 is su¤ciently large,
then for l� l0

F�z� � �z� c2z
2 � � � � ; and

Fl�z� � �z� c�l�2 z2 � � � � ;
where �� exp(2�i�/�), �, � 2Z, �>1, gcd(�,� )� 1.We consider now
the sequence �F�

l �l2N. From Section 1 it follows that liml!1 F�
l � F�.

Furthermore F�� z� � � �, F �
l �z� � z� � � � for l� l0. If l0 is large

enough, thenwe also have

F��z� � z� dnz
n � � � � � d2nÿ1z2nÿ1 �

X
��2n

d�z
�;

F�
l �z� � z� dnz

n � � � � � d2nÿ1z2nÿ1 �
X
��2n

d�l�� z�;

where n> 2, nÿ1 is a multiple of �, and dn 6� 0.Theorem 4 gives us the
existence of transformations T and Tl, l� l0 , such that F � �
T ÿ1 �N0 � T,F�

l � T ÿ1l �N0 � Tl, l� l0, and liml!1 Tl � T,where
N0 may be taken as the Scheinberg trinomial normal form of F�,

N0�z� � z� azn � bz2nÿ1; a 6� 0:

Here we applyTheorem 9 in [17] which states that also

F � Tÿ1 �N1 � T; Fl � T ÿ1l �N1 � Tl

for l� l0, N1 being an appropriate iterative root of order � of N0,
with multiplier �. If N is the trinomial normal form of N1
(cf. [17], Prop. 10), then Sÿ1 �N � S � N1 and consequently F �
�S � T�ÿ1 �N � �S � T�, and Fl � �S � Tl�ÿ1 �N � �S � Tl� for l� l0.
Putting V:� S �T, Vl :� S �Tl, we also have liml!1Vl�V
and F�Vÿ1 �N �V, Fl � V ÿ1

l �N �Vl for l� l0, which proves
Theorem 5. &

Corollary. Let �Fl�l2N be a convergent sequence, liml!1 Fl � F, F�z� �
�z� c2z2 � � � �. Let usmake one ofthe following assumptions:
a) � =2E, or
b) F�z� � z� c2z2 � � � � ; but F (z) 6� z, or

c) �2E n {1}, all Fl are iterable for large l, or
d ) Fis not iterable.
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Then there exists an l02N and a sequence �Sl�l�l0 of power series transformations
Sl (z)� z� � � � such that liml!1 Sl exists and Fl � Sÿ1l � F � Sl forall l� l0.

&

3.The Local Distribution of Iterable Power Series
Transformations in Higher Dimensions

The distribution problem (explained in Section 1) for automorphisms of
C [[x1, . . . ,xn]]with n� 2 so farhas only partial answers.Themain reason
for this is that the semi-canonical forms are not sowell understood as for
n�1.Nevertheless some ofour results maybeworth mentioning. For the
details about semi-canonical forms and about the iteration problem we
again quote the survey papers [9], [10], [11], [16], where the readermay ¢nd
references to the original articles.

Theorem 6. Let F2ÿ, F�x� � Ax� P�x�, where A2GL(n,C),
ord �P� � 2. Denote by �1, . . . , �n the eigenvalues of A. Let R be the set of all
relations ofthe form

�k � ��11 . . . ��nn

for k�1, . . . , n, � 2 Nn
0, �i� 0, j�j � 2.We assume that R is ¢nite (possibly

empty).Then, if Fis iterable, there is a neighbourhoodUofFin the order topologysuchthat
each G2Uis iterable. If Fis noniterable, then there is a neighbourhood U of F such that
eachG2Uis noniterable.

Proof: According to Section1we may assume thatF is in its semicanonical
form.The ¢niteness of R means that

F�x� � Jx� P�x�;
where J is in Jordan normal form and P�x� is a polynomial. More pre-
cisely, a monomial x�, j�j � 2, in the k-th component Pk�x� of P may
have a nonzero coe¤cient ck;� only if

�k � ��11 . . . ��nn

holds.These monomials are called additional (resonance) monomials for �k with
respect to �1, . . . , �n. If N2N is su¤ciently large, then each power series
transformation ~F 2 UN�F� has the form

~F �x� � Jx� P�x� � ~R�x�;
where ord � ~R� > N�� deg�P��. It is well known in the theory of nor-
mal forms that we can obtain a semicanonical form of ~F by the following
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procedure (`Formales Ausfegen', cf. [3]):There is a transformation S2ÿ,
S�x� � x� S�x�, with ord � ~S� > N�� deg�P��, such that ~N :�
Sÿ1 � ~F � S is the semicanonical form of ~F . This S operates on the N-
jet Jx� P�x� of ~F as identity. Hence ~N �x� � ~F �x�, since there are no
additional monomials of degree>N. Hence each ~F 2 UN�F� is conju-
gate to F, and therefore iterable i¡ F is.This provesTheorem 6. &

The assumption that the set R of relations �k � ��11 . . . ��nn , �i� 0,
j�j � 2, be ¢nite is ful¢lled in the important special case of the socalled
contractions, where 0< j�kj<1 fork�1, . . . , n, see [8].
If we do not make any assumption on the set R of multiplicative rela-

tions for the eigenvalues, then we only can prove a result on sequences
converging to F.

Theorem 7. IfF2ÿ is iterable [noniterable], then there is a sequence �F�k��k2N in ÿ
convergentto F such that each F�k� is iterable [noniterable] and F�k� 6� F forall k.

Proof: We start with a lemma which will also be useful later.

Lemma 5. IfF2ÿ,F�x� � Ax� P�x�, and ifnotall eigenvaluesofAareequal
to1, thenforeachN2N thereexistsk2 [1, n] and � 2 Nn

0 suchthat j�j>Nandx�

is notan additionalmonomial for �k with respectto the eigenvalues �1, . . . , �n ofA.

Proof: If the assertion of Lemma 5 is false, then there is a numberN02N
such that for each k2 [1, n] and each � 2 Nn

0 with j�j>N0 the relation

�k � ��11 . . . ��nn

holds. In particular, ifM is large enough, then we have

�k � �Mk
for each k, or �Lk � 1 for each k and each su¤ciently large L. Write
�k � re2�i� with r> 0 and 0��<1.Then �� a/b, where a, b2Z, b�1,
gcd(a, b)� 1, r�1andLa/b2Z for all su¤ciently largeL.We chooseL so
that gcd(L, b)� 1, hence gcd(La, b)� 1 which means b�1, if a 6� 0, or
a� 0, since La/b2Z. But since a2Z, 0� a/b<1, only a� 0 is possible,
and �k�1 for k�1, . . . , n contradicting the assumption on the eigen-
values ofA.This proves Lemma 5. &

We turn now to the proof of Theorem 7. Assume ¢rst that all eigenva-
lues of A are equal to 1. Then each G2UN (F ) has linear part A and
hence is iterable. Now assume that not all eigenvalues of A are equal to
1.Without loss of generality we take F as semicanonical form

F�x� � Jx�N�x�:
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Let N2N, N�1. According to Lemma 5 there exists k2 [1, n] and
� 2 Nn

0 such that j�j>N and x� is not an additional monomial for �k.
We ¢x these k and �; moreover we may select them so that � is minimal
in the lexicographical ordering of monomials, and k is minimal with
respect to the chosen j�j.Thenwrite F(x) as

F�x� � Jx�N ��x� � N ���x�;
where N ��x� consists of all additional monomials x � with j�j< j�j
(coe¤cients 0 admitted), whileN ���x� consists of the additional mono-
mials x� with j�j � j�j, all in their appropriate place. Let S be the trans-
formation

S�x� � x�

�k1
..
.

�kk
..
.

�kn

0BBBBB@

1CCCCCAx�;

and form G :� Sÿ1 � F � S. Then S operates on the (j�j ÿ 1)-jet
Jx�N ��x� of F(x) as identity. A detailed calculation shows that the
coe¤cient of x� in the k-th component Gk (x) of G is ��11 . . . ��nn ÿ �k;
hence 6� 0, since x� is not an additional monomial for �k.We omit the
details here, but indicate only that the minimality of k and � is crucial in
the arguments, as well as the fact that substitution of additional mono-
mials into additional monomials yields only additional monomials
(see [8]).
Summarizing, we obtain G2UN(F), G 6�F, and G is conjugate to F.

Hence G is iterable i¡ F is iterable. Since N was arbitrary,Theorem 7 is
proved. &

If the semicanonical formF2ÿ is not linearizable, thenF has aminimal
additional monomial (with a nonzero coe¤cient) which is an invariant of
the conjugacy class of F. This minimal additional monomial x�0 is
de¢ned as follows:

1) j�j �:m0 is minimal for all additional monomials x �which appear in
Fwith nonzero coe¤cient.

2) Then take the minimal indexk for whichx� with j�j �m0 is an addi-
tional monomial for �k , with nonzero coe¤cient in F.

3) Among those x� satisfying 1) and 2) take the monomial x�0 which
is minimal in the lexicographical order having a nonzero coe¤cient
in F.
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This minimal additional monomial is the same for all semicanonical
forms ofF. Furthermore (see [4], [5]), we know that F2ÿ has an analytic
iteration i¡ it is iterable at all. From the theory of analytic iterations (see
[9], [10], [16]) we know that each analytic iteration ofF is associatedwith a
certain choice �� (ln �1, . . . , ln �n) of the logarithms of the eigenvalues
�1, . . . , �n of A in F�x� � Ax� P�x�, and F has an analytic iteration
with respect to a given � i¡ it has a socalled smooth normal form with
respect to �. Using these notions we can prove

Theorem 8. Let F2ÿ be not linearizable and assume that the minimal additional
monomial of F is not smooth with respect to any choice �� (ln �1, . . . , ln �n) of the
logarithms of the eigenvalues �1, . . . , �n of F.Then there is a neighbourhood of F which
contains only noniterable automorphisms.

Proof: We may assume that F is already a semicanonical form, and that
N� 2 is the degree of its minimal additional monomial. LetG2UN(F).
Then G has the sameN-jet as F, and hence the structure of a semicano-
nical form mod ord N.We know already that there is a transformation
S2ÿ actingon theN-jet ofG as identity and transformingG into a semi-
canonical form H. Assume that G is analytically iterable. Then it has a
smooth normal form ~H with respect to a certain choice �0 of the loga-
rithms. But ~H andH have the same minimal additional monomial, and
obviouslyH andF have the same minimal additional monomial, too. So
this would be smooth with respect to �0, a contradiction. &

Theorem1(iv) is a special case of Theorem 8, as can easily be checked.
One may ask, whether a power series transformation F2ÿ, sur-

rounded by a large enough set of iterable [noniterable] transformations
is iterable [noniterable] itself. A (rather weak) answer to this equation is

Theorem 9. Let F2ÿ, and U(F ) be a strong neighbourhood of F such that each
G2U(F) \ {F} is iterable [noniterable].Then Fis iterable [noniterable] itself.
Proof: If the linear part ofF has only 1as eigenvalue, thenF is iterable. So
assume that F�x� � Ax� P�x�, where A has an eigenvalue di¡erent
from 1. Then, according to Lemma 5, for each N2N there is k2 [1, n]
and � 2 Nn

0 with j�j>N such that x� is not an additional monomial
for �k (�1, . . . , �n being the eigenvalues ofA).Then the argument in the
proof of Theorem 7 gives us S2ÿ such that Sÿ1 � F � S 2 UN�F� and
Sÿ1 � F � S 6� �F�. Hence G :� Sÿ1 � F � S is iterable i¡ F is iterable.
This ¢nishes the proof. &

Here are some possibilities to weaken the assumptions of Theorem 9.
E.g., in order to deduce the iterability of F it is su¤cient to assume
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the existence of a countable set C in UN(F ) such that all
G 2 UN�F�n�fFg [ C� are iterable. Another possibility is to assume
the iterability of all G in UN�F�n�fFg [ D�, where D is de¢ned as the
set of all H2UN(F ) such that for each semicanonical form N of F the
conjugate Hÿ1 �N �H also is a semicanonical form.The set D can be
uncountable, though still t̀hin'and of a very special nature.We omit the
proofs of these remarks.
The information about the structure of convergent sequences in the

higher-dimensional case is also not very satisfactory. Our technique of
semicanonical forms yields

Theorem10.Let �F� l��l2N bea convergentsequence inÿ with F � liml!1 F�l�:
Then there is l02N such that for l� l0 there is a transformation T(l )2ÿ,
T(l ) (x)�x� � � �, such that

a) liml!1T(l )�T exists,
b) Tÿ1�l� � F�l� � T�l� is a semicanonical formforl� l0 , and
c) Tÿ1 � F � T is a semicanonical form.

Proof: Finding a semicanonical formNofFmeans solving the functional
equation F �T�T �N forTandN, where we have the conditions

1) T(x)�x� � � �, and
2) N�x� � Jx�N�x�, where J is aJordan normal form and in thek-th

component N k �x� ofN �x� a monomial x� can have a nonzero co-
e¤cient dk;� only if the relation �k � ��11 . . . ��nn holds, where �1 . . . �n
are the eigenvalues of J, �� (�1, . . . , �n), j�j � 2.

This SchrÎder type equation always has a solution, but in general the
solution is not unique.We can enforce uniqueness, if we require (see [8])
that the coe¤cient tk;� ofx

� in thekth component ofT (x)�x� � � � be 0
if �k � ��11 . . . ��nn holds (i.e. if x� is an additional monomial for �k).
Doing so, we ¢nd that each coe¤cient tk;� is a polynomial in the coe¤-
cients al;� ofFwith l�1, . . . , n, j�j � j�j, being rational in �1, . . . , �n.The
coe¤cients of the semicanonical form N are then also uniquely deter-
mined, in fact, the coe¤cient g k;� of an additional monomial x� in the
component N k �x� is a polynomial in the coe¤cients al;� of F with
l�1, . . . , n and j�j � j�j. Applying this construction to F and F�l� for
l� l0 (for which F�l� 2 U1�F�), we ¢nd transformations T�l�, l� l0 , of
F�l� to a semicanonical form N�l� such that liml!1 T�l� � T and
liml!1 N�l� � N exist,N is a semicanonical form of F, and the Theo-
rem is proved. &
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