Sitzungsber. Abt. 11 (1999) 208: 97-114

On the Distribution of Formal Power Series
Transformations with Respect to
Embeddability in the Order Topology

By

L. Reich

(Vorgelegt in der Sitzung der math.-nat. Klasse am 25. Mirz 1999
durch das w.M. Ludwig Reich)

1. Introduction. The Main Results

Let C[[xy, - - -, x,]] (briefly C[[x]], where x="(xy, ..., x,) is the vector
of indeterminates) be the ring of formal power series in 7 indeter-
minates x, . . ., x, with complex coeflicients. We consider in this paper
formal power series transformations F by which we understand auto-
motrphisms I of C[[x]] which are continuous with respect to the order
topology (i.e., order preserving) and leave every element of the ground
field C fixed. It is well known that these automorphisms F are in 1—1
correspondence to the images F(x) = Ax + P(x) of x. Here A runs
through the matrices of GL (1, C), and P(x) is an n-tuple of formal
power seties with ord(P) > 2. Moreovet, these automorphisms form a
group I' under composition o which is, in the above mentioned picture,
represented by substitution of one n-tupel Ax + P(x) € C[[x]] into
another.

F is called 7terable (embeddable), if there exists a family (F,),ec in I' such
that

(T) F,0F, = Fyy,,t,5 € C,
(E) F, = F.
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(T') is nothing but the famous translation equation, (E) is the embedding
condition. (F)),cc is then cleatly a group with operation o, called zzeration
(gronp) of F. In general, such an iteration does not exist for a given F.

The problem of finding an embedding (iteration) of a selfmapping of a
given set can be studied in much more general situations and is one of the
main problems of iteration theory (see e.g. [19], [20]). The above men-
tioned iteration problem in I' was studied in detail by several authors.
We refer the reader to the survey articles [9], [10], [11], [16], as well as to
[1], 2], (4117}, [18].

In a series of papers ([12], [14], [15]) we investigated how iterable (and
also noniterable) power series tranformations are distributed locally in a
neighbourhood of a given I € I, where neighbourhood is understood in
the sense of the weak topology (coefficientwise topology on C[[x]], resp.
I'). Now we are interested in the same type of problems, but the neighbot-
hoods of the given I € I are those in the socalled order topology (strong
topology).

The otder topology on C[[x, . . ., x,]] is described by introducing the
sets

Un(®) := {0 € C[[x]]|ord(® — ¥) > N}

as the members of a basis of open neighbothoods of ® € C[[x]], where
N runs through N. This leads then to the product topology on the
space (C[[x]])", and by identifying F €' with F(x) = Ax + P(x) €
(C[[x]])") and by restricting everything to I we get the order topology
(strong topology) on I'. This topology can be introduced by a mettic, and
has therefore almost all good properties. The following basic results are
easy to prove.

Lemma 1. (7) Themapping from ' X I o1, defined by (F, G ) — I o G, is contin-
nous. (i) The mapping from T 1o T, defined by Fv— F~", is continuons.

Proofs (1) If (v1,---,v,) €N, let |v]:=v1+- 41, and x":=
X7 o« We consider FET as F(x) = Ax + P(x) € (C[[~]])". Let
Aty Uiy, cey be the coefficients of x” in the &th components Fy, G,
(FoG)e (1 <k<n of F, G, Fog, respectively. Then ¢, is a (universal)
polynomial

Chy = Qb/e,l/(ﬂ/,uab/,u“ </< n, 1 < |,LL| < |V|)

in the coefficients a;,, b,,, of Fand G, where 1 </<n, || < |v|. Hence, if
for a certain N > 1,ord(F — F) > N, ord(G — G) > N, then we

have for the corresponding coefficients a4 ,,, b, of ', G

5/,;; = al b/,u = b/,m I=1,...m, ’,u| <N,
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and therefore
Chy = ¢k7y(ﬂl,u’b/,u‘l <I<nm 1< |l <) =
= Geaanp, bt <1< 1< |p| < |V]) =gy

for £#=1,...,n, provided that |v|<N. From this we deduce
ord(Fo G — F o G) > N, establishing Lemma 1(i).

(i)' is represented by an z-tuple of the form F~' = A~'x + Q(x), if
F(x) = Ax + P(x).The coefficientdy , of x” in Q(x) is represented by

a (universal) function

v = 7/’&,1/(/4,4/,/1‘1 </<n2< |/L| < |V|)7

which is a rational function in the elements of A € GL (z, C) and a poly-
nomial in 4, . Hence, if ord(F — F > N (N > 1), then, denoting
by @, d &,v the coefficients of F and F- respectively, we find

v = wk,u(Aaﬂ/,u‘l </< ”72 < ‘:U" < ’V‘)
= (A ap )l <1< 2 < || < ) = deps

for£=1,...,nand |v| < N. Hence F+— F " is continuous in the order

topology. |
Lemma 2. (7) (I, o) is a topological groﬂp in z‘/ye strong topology. (ii) For each
T el the comjugation ¢r: I' =T, ef(F) := YoFoTisan isomorphism of the
topological group I

Proof: Immediate consequence of Lemma 1.

As can be seen from the survey articles [9], [10], [11], [16], a basic tool in
solving the iteration problem in I' are the socalled semicanonical forms
(btiefly normal forms) of the elements of I' under conjugation. It is almost
obvious that iteration problems and their possible solutions are invariant
under conjugation. So we always may replace, for our purposes, a given F
by one of its semicanonical forms (or a set of formal power series trans-
formations by their simultaneous conjugates under the same ¢7). We refer
the reader to the papers quoted above for details about normal forms and
their applications in solving the iteration problem.

We are now ready to sketch the type of problems we will deal with. Let
F eI Under what conditions on IF does thete exist a neighbourhood
Un(F) of F (in the strong topology) consisting entirely of iterable (or
entirely of noniterable) power series transformations? Under what condi-
tions on a given F is there in each neighbourhood of Fan iterable G # I
or a noniterable G # F, or are there in each neighbourhood both iterable
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and noniterable power seties transformations? Is the limit of a convergent
series of iterable automorphisms always iterable?

In Section 2 we will discuss series in one indeterminate, and give a
rather complete answer. We can do this, since the semicanonical forms
in this case are well known. There are even strict trinomial normal forms
due to Scheinber ([7]) which we will also use in one place.

The main difference between the weak and the strong topology — as far
as our investigations are concerned-, seems to lie in the fact that there are
power series F(z) = pz 43" + - - - (they are indeed the nonembeddable
ones) with the property that they have strong neighborhoods which
consist of noniterable series. In the weak topology one can prove (in-
dependently of the number of indeterminates) that in each (weak)
neighbourhood of any given IF € I' there ate iterable automorphisms G,
different from K

In Section 2 we will also show that in the 1-dimensional case the limit
of each convergent sequence of iterable series is iterable. The problem
remains open in higher dimensions. In the weak topology a convergent
sequence of iterable series need not have an iterable limit, not even in
dimension 1. These results concerning the distribution with respect to
the weak topology are proved in the papers [12], [14] and [15] quoted
above.

Our techniques yield some insight to a more detailed structure of con-
vergent sequences (in the 1-dimensional case). Roughly speaking, if the
limit F of a convergent sequence (I),cn of formal power series is of the
form F(z) = pz 43" + - - -, where 2) p is not a root of 1, or b) F(z) is not
iterable, or &) F(z) =z 43"+ -+, but F(z)#z, then almost all F/s
(> fy) are conjugate to F. Also, if almost all F/s are iterable and p in the
limit F(z) = pz +e3° + - - - is different from 1, the same is true.

In the higher-dimensional case of the automorphism group I'

of C[[xb R x”] (n>1) our results are far from complete. Let
FeTl, F(x) = Ax + P(x), where A € GL(n,C), ord(P) > 2, and
whete pq, ..., p, are the eigenvalues of 4. Denote by ‘R the set of rela-

tions pr = pi' ... p, 1 <k <nmwithv,€ Ny vy + - +1,> 2. If Ris
finite (possibly empty) then we can show that for an iterable [a noniterable]
F there exists a strong neighbourhood Un(F) which contains only itera-
ble [noniterable] automorhphisms. If R is finite, then a convergent
sequence (F))en of iterable [noniterable] F,)’s has an iterable [noniter-
able] limit.

If no assumptions on the eigenvalues are imposed then we can only
prove that if FF€I' is iterable [noniterable], then there is a sequence

(Fy)en of iterable [noniterable] power series transformations conver-
ging to IFand such that F'# I, for all . If F €I has a neighbourhood
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U(F) such that each G € U(F)\{F} is iterable [noniterable], then F is
iterable [noniterable]. In this result we are able to replace the exceptional
set {F} by a somewhat larger set, but unfortunately up to now not
by a ‘big’ set. Eventually, we will prove a result on semicanonical forms
Ny of the members F,y of a convergent sequence (F(,)en in I', but
weaker than similar results in Section 2 for the case #»=1. Namely,
there is /0 € N such that for /> /4 each F(;y can be represented as F(;) =

(/ yo 7)), where Ny is a semicanonical form of Fy), N

hm/H OON(/) and V'=lim,_ /) exist and lim,_,F,=
17" o N o I with the semicanonical form N.

2. Power Series Transformations in One Indeterminate
2.1. Problems of Distribution

We recall (see [12]) some basic results on semicanonical forms of power
series in one indeterminate and on the connection of iterability and nor-
mal forms. By E we denote the group of complex roots of 1.

Lemma 3. (/) If FR)=pz+oz’+---, ps cC \ E, then F is conjugate to
s linear part pz. (@) If F (3)=pz —l—fzz +-,p€E\{1}, and if
p=exp2mice/3) with o, B € Z, 3>1, ged(ev, B) =1, then F is conjugate to a
Semicanonical form

NE) =pz+ Y 0"

v>1

which is, in general, not uniquely determined. If pz is a semicanonical form of F, then pz
is the only ome. Iff on the other hand, F bas a semicanonical form N(3)=
P+ P, %V‘)B b where vo > 1, @y g1 0, then for cach xemzmnomm/ forw
M(z) of I the series M({) — pzhas order v, 3 + L @)IfF (3)=z+dz“+-

wbere k>2, di #£0, then emb mlgﬂgm‘e T 'oFoT of F has the same form
(T oFoTYR)=x+e& + -, withe, #0. [

Lemmad. () Assumethat p#1and F(z)=pz+ [2%2+ <« Then Fis iterable
if and only if it is conjugate to its linear part p3. Hence, if p € C'\E, then F is always
iterable. If p € E\{1}, then Fis iterable iffeach yewzmﬂomml form is linear (iffat least
one semicanonical form is linear). (i) If F(z) =g +de g 4. withk>2,d, #0,

then F is iterable. [ |

From these lemmas we deduce a survey on the local distribution of
formal series with respect to embeddability in the strong topology.
Theorems 1 and 2 are already contained in [12], but for reasons of
completeness we reproduce them here. For Theorem 2 we will give a
new, farther reaching, proof too.
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Theotem 1. () IfF(3) = p3+ Xu=20.3", where p € C\ E, then each sufficiently
small neighbourhood of ¥ (in the order topology) contains only iterable series. (it) If
F(x)=z+ -+, theneach suficiently small neighbourhood of F consists entirely of itera-
ble series. (i) If F(3) = p3 + - - -, with p € E\{1}, is iterable, then in each neighbor-
hood of F' there are iterable power series, different from F, as well as noniterable series. (iv)
IFER)=px+ - -, with p € E\{1}, is noniterable, then each sufficiently small neigh-
bourhood of F consists entirely of noniterable series.

Proof: (i) Take the neighbourhood U;(F). Then each G € U;( F) starts with
pz, where p € C'\ E. Hence, according to Lemma 4(i), G is iterable.

(i) Here each G in Uj(F) has the form g+ - - -, so is either the identity
(hence iterable) ot is iterable by Lemma 4 (ii).

(iii) Suppose now that F(z) = pg +¢,3° - - -, where p € E\ {1}, is iterable.
p can be represented as p = exp(2mia/3), with o, B € Z, 3> 1, ged(ev, 3)
=1. According to Lemma 4(i) there is a TET, TR)=z+%Hz" +- -,
such that (T "'oF o T)(z) = pz. As we know (see Section 1), we may as-
sume for our purposes that F(z) = pz. Consider first the sequence (F,),,en
with F,(z)=pz —1—{”/8“ for n € N. According to Lemmas 3 and 4, these
F, are in semicanonical form and atre not linear and also not linearizable.
Then, by Lemma 4, they are not iterable. Moreover, we have
lim, o F(3) = F(z) = pz. This shows that each neighbourhood of F
contains a series which is not iterable.

Consider now a sequence (§,),en in I, where §,(3) = 3 + 3%, and
k)uen 1s strictly increasing and, furthermore, g'/@“ is not an additional
monomial with respect to the relation p” ™' = p, i.e. £,#1 (mod 3), for
each 7. If we calculate the seties G, := § ”_1 o F oS, for the normal form
F(z) = pz, we find

G/(R) =pz+ (P = p)zf+ -+,

where p% — p # 0. Hence G,# F for each #, lim, ., G,(z) = Fz), and
G, = Sf o F oS, is iterable since it is conjugate to F Therefore we have
constructed an iterable power series G, different from F, in each neigh-
bourhood of .

(iv) The last case refers to a series F(3)=pz+ez 4 ..., where
p € E\{1}, and F is not iterable. Again, we may assume that F is already
a semicanonical form. So, if p=explmia/B), o, BEZ, [B>1,
gcd(av, ) =1, then by Lemmas 3 and 4

F(R) = px + dups1d™ + > dpraz™,

v>y
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where vy >1and 4,341 # 0. Then each seties G € U, 341 (F) is of the
form

GR) = P+ dupnd™ + > gt
u>rB+1

If we want to construct a semicanonical form of G, then, as is well
known from the theory of normal forms, we can achieve this through
conjugation by a transformation

VR =+ Y, uRh
u>vf+1

since the (v 3 +1)-jet of G is already in semicanonical form with respect
to p (‘Formales Ausfegen, cf. [3], ch. 3). This means that

(Vo Go 1)) = px 4+ dupnd™ + Y dupaz™,

>y

and since dy,541 # 0,177 'oGol7and G are not iterable, according to
Lemma 4. ]

Similar techniques allow us to show that in the case of one indetermi-
nate each convergent sequence of iterable power series has an iterable
limit (Theorem 1 shows that a sequence of noniterable series may have
an iterable limit).

Theorem 2.  Let (F) e be a convergent sequence of iterable power series transforma-
tions in one indeterminate, and let F =1im,,_, . . Then F is iterable.

Proof: We assume that the limit F of (F)en is FG)= pz 4+ + - If
p€C'\ E or p=1, then F is iterable by Lemma 4. So it suffices to con-
sider the case p € E\ {1}. Assume p=exp(2mict/0), a, BEZ, 3>1,
gcd(ar, B) =1. Then there is an index / such that for />/, F,(3) =

P+ cg/)zz + -+, and each F; is iterable by assumption. We assume now

that F is not iterable. Take any normal form of F:

(T o FoT)RR)=px+ Y dpriz”.

v>1

From Lemma 4 we know that there is an index vy > 1 such that

(T_l oFo T) (z) = p{ + dV()ﬁ+1zV0ﬁ+l + Z dyﬁ+1{yﬂ+l,

V>

where dy 511 # 0. Instead of F and (F),en we may consider T 'oFoT
and the sequence (T’ o F,oT")en of iterable transformations. Now, there
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is an /1 > /y such that for each /> /

(T o FroT)R) = px +dupeix™ + Y du3,
> f+1

with dy, 311 7# 0.We have already shown in the proof of Theorem 1 that F,
is not iterable which is a contradiction to the assumption. Hence F must
be iterable. [ |

There is a different proof of Theorem 2 which, moreover, gives more
information on convergent sequences of iterable power series. We will
present it here. We again consider the case p € E\{1}, p = exp2mic/3),
and use the same notation.

Theorem 2, alternative proof. Since each I is iterable, it is of the form

Fi(3) = T (pTi(g)) for/> hy, where T)(3) = 3 + é/)zz + - - The ser-
ies (T))en 18, in general, not uniquely determined by F,. However, there is
for each F;a unique normalized T}, namely normalized by the condition

TR =+ Y, 1"

p>1
p#1(mod )

ie,byz,=0if p=1 (mod ) (see [13]). The coefficients z‘L/) are universal
functions

1D = gu(psed), e,

rational in p and polynomial in the coefficients cl(f) of F. We see that
Kg/), ce c,(”/) are the same as ¢,...,c, for /> L), hence ¢,(p;
cg), .. ,[I(j)) = (ﬁu(p; €2y nn- ,fu) for u <m and /> L). This means that
lim, . T;=Texists, and T(x) =g+ X,>»453". Hence (see Section 1,
Lemma 1)

F(z) = lim T (pTi(z)) = T~ (pT(2)),
and F is iterable. [ |

This proof shows in addition that, in the case under consideration,
F, =T, YpT)(3)) for /> 1, where lim, ., T)= T exists and F(z) =
lim/ oo T (pTi(3)) = T "1 (pT(2))-

Similar results hold in other cases. As a first result we present.

Theorem 3. Let (F)) e n beaconvergent sequence of iterable series Fy, let F = lim,_, o
and assume that F(3)= pz + - - -, where p 7 1. Then, for sufficiently large 1> 1),
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there excists a sequence (T)) >0 T/(z) =g+, suchthat

a) lim,_,, T;= T(T(z) g+ ) exists,

b) Fiz) =T (pT1(2)),

o Fy=T1" (PT(%))

Proof: We already gave the proof for the case where p€ E\ {1}. As-
sume now that p € C'\E. It is obvious that for / > /) F,(3) = pz+

zz + - Accordmg to Lemma 3 there are transformations
V/, Vi(z ) =3+ 5 Dzt such that F)(z) = 17 71 (p1(3)). The
I7)’s are umque in fact thelr coefficients v'/) are universal functions
v(/) = U, (p; (), ceey ff)) rational in p, polynomial in ;gl), ceey Ef) To

each m 2> 1there isan L(m) such that (/) = tp, for2 < p<mand /> L(m).
Hence vl(/) = ,(p; c( ) el (1)) = Yu(p;eay ... yey) for p=2,...,m,if
/> L(m). This means again that lim, ., V/: 17 exists and F=
lim; . F; = 1V " (pl (3)). |

2.2. Convergent Sequences

Theorem 3 leads to the question whether in the case of power series trans-
formations in one indeterminate more details can be derived about the
structute of sequences (I)) e in I" which converge in the order topology.
Let F be the limit of (F))en. If, e.g., F(3) = pg, where p € E\ {1} (more
generally, if F is iterable and has a multiplier p € E\{1}), then we have
already seen that F is the limit of a sequence of iterable seties G, G;#E
and also the limit of a sequence of noniterable ones. Hence in this case we
cannot expect to find more details about the structure of sequences con-
Vergmg to F. The same happens if F(z)=z. But if p€ E\{1}, F(z) =
pz+ -+, and Fis noniterable, or in the case where F(3) =z +dg" + -
with d 75 0 for some £ 2> 2, we will show a result about the sequences
(F)sen, converging to F, which is very similar to Theorem 3. For this
purpose we need the trinomial normal forms of Scheinberg ([17]).

Theorem 4. Let (F)cny be a convergent sequence, limy_, o, Fy= F, and F(z) =
+d+ -, where n>2, d;éO Let Ni)=z+ aF +bz2” " be the
trinomial ﬂorma/ form of E, N=S8""0F oS, with some SG)=% + - - - €L (which
implies a=d,#0). Then there exists an index Iy €N and a sequence
(T/)/>/l. el T)(x)=x+--+, and a solution T, T(g)=3+---,0f F=
T 'oNo Tsmb that Olimy_oo T;= T, and i) F; =T ;" o N o T}, for all
1> .
In particular, for! > 1y, all F)’s are conjugate to .

Progf: There is an /, such that, for />y, F)(3) = 2 + d,3"+ doy13% '+
> o dVHEF(R) = 2+ d 2 + doyr 3 1o, dug. For Fand
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each F, />/, there exist transformations T, T(g)=g+---, and
T,Tf{z)=g+---, such that

(T'oFoT)(x)=(T; " oF0T)=x+a"+ ™",

with @ = d,. A reformulation of the proof of Proposition 6 in [17] tells us,
how specific solutions of these Schroder type equations T' 1ToFoT=
N, T/_1 o IFyo T, = N can be constructed. In fact, thisT has the follow-
ing structure:

TR)=z+06++ 41 + Ytk

v>1

where 7,, is a certain polynomial
i :Pu(dm dﬂ-Ha s >dn+u—1)
for 2 < p <n—1, while, for v >1, 7, , is a certain polynomial
fn+l/ :pﬂ-‘ru(dm d}H—la s 7‘12%—1;‘12%7 R 7d2ﬂ+l/—1)'
(#, may be chosen as 0, which we do, Similatly,
— /
TR) =g+n+ T Y AL,
v>1
where
l‘g) = ZLH :pﬂ(dm dnJrl) cee 7dﬂ+/1,*l)

for2<pu<n—1,7") = 0,and for v >1

f,gﬁy = pﬂ+l/(dﬂ7 dﬂ+17 s 7427171 ; dz(

Since lim,_, o F;=F, we deduce lim,_, ., T;= T. Moreover, for /> I,
F,and F have the same trinomial normal form. [ |

/) () ).

v 2ntv—1

An analogue of Theorem 4 holds true in the case of convergent
sequences (F),cn whose limit is not iterable. Hence F is of the form
Pz +ez” 4 -+, where p € E\{1}, say p=exp(2mict/B), a, BE Z, 3>1,
gcd(ay, ) =1, and F is not linearizable.

Theorem 5. Let (F),e n C I be a convergent sequence with noniterable linsit F. Then
there is an ly and a sequence (1)) 1., such that

(@) limy_, o V= Vexists,V ;) =3+, Vg)=z+--,and
(i) F=1V""oNol/,F, =V "oNol/, forl > Iy,

where N is the Scheinberg trinomial normal form of F.

Proof: There is an 4y such that for all /> /) I, is not iterable. Otherwise we
would have a subsequence of iterable series of (F),c n, converging to F,
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and Theorem 2 would imply that F'is also iterable. If /, is sufficiently large,
then for/ >/,

F(z) = px+ ez’ + -, and

Fiz) = px+d)s% + -+,
where p = exp(2micr/3), o, B € Z, 3 >1, ged(av, ) = 1. We consider now
the sequence (Ff; )eny- From Section 1 it follows that lim;_, F)’ = F¥.
Furthermore F"=z+--, F,ﬂ(z) =z+--- for /> If [ is large
enough, then we also have

FOR)=z+d3 + - +dur " + ) dug",

p=2n
F/ﬁ(z) =3 + dﬂzn + -+ d2’171z211—1 + Z dﬁ(tl)zuv
n>2n

where 7> 2, n—11is a multiple of 3, and 4,7 0. Theorem 4 gives us the
existence of transformations T and T, />/,, such that F A=
T l'oNyoT, F/ﬁ =T, o Nyo T,/>l,andlim,_, T; = T,where
Ny may be taken as the Scheinberg trinomial normal form of F B

No(z) =z +ag" + 0", a #0.
Here we apply Theorem 9 in [17] which states that also
F=T"'oNyjoT, F,=T'"oN;oT

for />y, N; being an appropriate iterative root of order 3 of Ny,
with multiplier p. If N is the trinomial normal form of N
(cf. [17], Prop. 10), then S™'o N oS = N; and consequently F =
(SoT) '"oNo(SoT),and F; = (S0 1)) o No(SoT)) for/>4.
Putting I":=50T, I/,:=507T, we also have lim,,,1/,=1"
and F=1""oNo V, F,= V/_l oNol/ for />/, which proves
Theorem 5. ]

Corollary. Let (F)),ep be a convergent sequence, lim;_.o. F; = F, F(z) =
P2+ 0237 + - - . Let us make one of the following assumptions:

ay p¢ E, or

by FR)=x+ax’+ -, FR)#z,0r
¢) peE\ {1}, all b are iterable for large 1, or
d) Fis not iterable.
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Then there excists an by € N and a sequence (S) 1., of power series transformations
S ®) =g+ suchthat im0 S, existsand F; = Sl_l oFolS,foralll > k.
|

3. The Local Distribution of Iterable Power Series
Transformations in Higher Dimensions

The distribution problem (explained in Section 1) for automorphisms of
Cllx1, - - -, x,]] withz > 2 so far has only partial answers. The main reason
for this is that the semi-canonical forms are not so well understood as for
n=1. Nevertheless some of our results may be worth mentioning. For the
details about semi-canonical forms and about the iteration problem we
again quote the survey papers [9], [10], [11], [16], where the reader may find
references to the original articles.

Theotem 6. Let FeI, F(x) = Ax+ P(x), whre A€GL(n,C),
ord (P) > 2. Denote by pi, . . ., p, the eigenvalues of A. Let R be the set of all
relations of the form

pe =P P

Jork=1,...,n, v &€ NJ, v;>0, |v| > 2. We assume that R is finite (possibly
emipty). Then, if Fis iterable, there is a neighbonrhood U of Fin the order topology such that
each G € Us iterable. If F is noniterable, then there is a neighbourhood U of F such that
each G € U is noniterable.

Progf: According to Section 1 we may assume that Fis in its semicanonical
form. The finiteness of R means that

F(x) = Jx + P(x),

where [ is in Jordan normal form and P(x) is a polynomial. More pre-
cisely, a monomial x”, [v| > 2, in the &th component Pr(x) of P may
have a nonzero coefficient ¢, only if

pe=p .. p)
holds. These monomials ate called additional (esonance) nmonomials for py with
respectto py, . . ., p,. If N € N is sufficiently large, then each power series
transformation F € Un/(F) has the form
F(x) = Jx + Px) + R (%),

where ord (R ) > N(> deg(P)). It is well known in the theory of nor-
mal forms that we can obtain a semicanonical form of I by the following
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procedure (‘Formales Ausfegen’, cf. [3]): There is a transformation § € I,
S(x) = x+ S(x), with ord(S) > N(> deg(P)), such that N :=
§7' o F o is the semicanonical form of F. This § operates on the N-
jet Jx + P(x) of F as identity. Hence N (x) = F (x), since there are no

additional monomials of degree > N. Hence each F € Un(F) is conju-
gate to I, and therefore iterable iff F is. This proves Theorem 6. [ ]

The assumption that the set R of relations pr = p|" ... p", 1;>0,
|v| > 2, be finite is fulfilled in the important special case of the socalled
contractions, where 0 < |p,| <1fork=1,...,n, see[8].

If we do not make any assumption on the set R of multiplicative rela-
tions for the eigenvalues, then we only can prove a result on sequences
converging to F.

Theorem 7. If ¥ € I is iterable [ noniterable), then there is a sequence (F (¢)) yeny in T
convergent to T such that each F ) is iterable [noniterable] and F vy # F for all k.

Proof: We start with a lemma which will also be useful later.

Lemma 5. IfF € T, F(x) = Ax + P(x), and if notall eigenvalues of A are equal
101, thenforeach N € N thereexistsk € (1, n] andv € Ny such that |v| > N and x"”
is not an additional monomial for py, with respect to the eigenvalues py, . . ., p, of A.

Proof: Tf the assertion of Lemma 5 is false, then thete is a number No€ N
such that for each £ € [1, 7] and each v € Nj with |v| > N the relation

pe=pi ... p)
holds. In particular, if M is large enough, then we have

pe =P
for each £, or pi =1 for each £ and each sufficiently large .. Write
pr = 1™ with r>0and 0 < a < 1. Then o = alb, whetea, b€ Z,b>1,
ged@, b)) =1, r="1and La/b € Z for all sufficiently large I..We choose L so
that ged(l, b)) =1, hence gcd(l.a, ) =1 which means b=1, if ##0, or
a=0, since Lafb € Z. But sincea € Z,0 < alb <1, only a=0 is possible,
and pe=1for £=1,...,7 contradicting the assumption on the eigen-
values of 4. This proves Lemma 5. |

We turn now to the proof of Theorem 7. Assume first that all eigenva-
lues of A are equal to 1. Then each G € Un (F) has linear part 4 and
hence is iterable. Now assume that not all eigenvalues of .4 are equal to
1. Without loss of generality we take Fas semicanonical form

F(x) = Jx + N(x).
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Let Ne N, N>1. According to Lemma 5 there exists £ € [1, #] and
v € N such that |v| > N and x" is 7o an additional monomial for p,.
We fix these £ and v; moreover we may select them so that v is minimal
in the lexicographical ordering of monomials, and 4 is minimal with
respect to the chosen |v|. Then write F(x) as

F(x) = Jx + N7 (x) + N7 (x),

where N *(x) consists of all additional monomials x " with |u| < |V
(coefficients 0 admitted), while "™ (x) consists of the additional mono-
mials x* with || > |v], all in their appropriate place. Let S be the trans-
formation

be1
S(x)=x4+ | o |x",

6/éﬂ

and form G:=S5'oFoS. Then § operates on the (Jv|—1)-jet
Jx 4+ N 7(x) of F&) as identity. A detailed calculation shows that the
coefficient of x” in the &th component G, &) of G is p' ... p" — pe;
hence # 0, since x” is not an additional monomial for p,. We omit the
details here, but indicate only that the minimality of £ and v is crucial in
the arguments, as well as the fact that substitution of additional mono-
mials into additional monomials yields only additional monomials
(see [8]).

Summarizing, we obtain G € Un(F), G# F, and G is conjugate to F.
Hence G is iterable iff F is iterable. Since N was arbitrary, Theorem 7 is
proved. [ |

If the semicanonical form F € I'is not linearizable, then F has a zininal
additional monomial (with a nonzero coefficient) which is an invariant of
the conjugacy class of F. This minimal additional monomial x™ is
defined as follows:

1) |v| =: 7 is minimal for all additional monomials x* which appear in
F with nonzero coefficient.

2) Then take the minimal index £ for which x” with |v| = is an addi-
tional monomial for pg, with nonzero coefficient in F.

3) Among those x” satisfying 1) and 2) take the monomial x” which
is minimal in the lexicographical order having a nonzero coefficient
in K
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This minimal additional monomial is the same for all semicanonical
forms of I Furthermore (see [4], [5]), we know that IF € I has an analytic
iteration iff it is iterable at all. From the theory of analytic iterations (see
[9], [10], [16]) we know that each analytic iteration of I is associated with a
certain choice A =(ln py, ..., 1n p,) of the logarithms of the eigenvalues
P15 Py of A in F(x) = Ax + P(x), and F has an analytic iteration
with tespect to a given A iff it has a socalled smooth normal form with
respect to A. Using these notions we can prove

Theorem 8. Let F €I be not linearizable and assume that the minimal additional
monomial of F is not smooth with respect to any chowce A= (1n py, ..., 10 p,) of the
logarithms of the eigenvalues pu, . . ., p,, of F. Then there is a neighbourhood of F which
contains only noniterable automorpbisms.

Proof: We may assume that F is already a semicanonical form, and that
N > 2is the degree of its minimal additional monomial. Let G € Un(F).
Then G has the same N-jet as I, and hence the structure of a semicano-
nical form mod ord N. We know already that there is a transformation
S € I' acting on the N-jet of G as identity and transforming Ginto a semi-
canonical form H. Assume that G is analytically iterable. Then it has a
smooth normal form H with respect to a certain choice A of the loga-
rithms. But H and H have the same minimal additional monomial, and
obviously H and F have the same minimal additional monomial, too. So
this would be smooth with respect to A", a contradiction. |

Theorem 1(iv) is a special case of Theorem 8, as can easily be checked.

One may ask, whether a power seties transformation F €I, sur-
rounded by a large enough set of iterable [noniterable] transformations
is iterable [noniterable] itself. A (rather weak) answer to this equation is

Theorem 9. Ler F €T, and U(F) be a strong neighbonrhood of F such that each
G € U(F) \ {F} is iterable [noniterable). Then F is iterable [noniterable) itself.

Proof: 1f the linear part of F has only 1as eigenvalue, then F is iterable. So
assume that F(x) = Ax + P(x), where A has an eigenvalue different
from 1. Then, according to Lemma 5, for each N € N there is £ € [1, 7]
and v € NJ with |v| > N such that x” is not an additional monomial
for pe (o1, - - -, p, being the eigenvalues of .4). Then the argument in the
proof of Theorem 7 gives us S € " such that ™' o Fo § € Un/(F) and
S71oFoS# (F). Hence G := S ! o Fo S is iterable iff F is iterable.
This finishes the proof. |

Here are some possibilities to weaken the assumptions of Theorem 9.
E.g., in order to deduce the iterability of F it is sufficient to assume
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the existence of a countable set C in Un(I7) such that all
G € Un(F)\({F} UC) ate iterable. Another possibility is to assume
the iterability of all G in Un(F)\({F} U D), where D is defined as the
set of all H € Un(F) such that for each semicanonical form N of F the
conjugate H~' o N o H also is a semicanonical form. The set D can be
uncountable, though still ‘thin’and of a very special nature. We omit the
proofs of these remarks.

The information about the structure of convergent sequences in the
higher-dimensional case is also not very satisfactory. Our technique of
semicanonical forms yields

Theorem 10. Let (F())) o beaconvergent sequencein T with F = 1im oo F()).
Then there is ly€ N such that for [ 2> 1y there is a transformation Ty €T,
Tyy(x)=x+ -, such that

a) lim,_, o T@ = T excists,
b) Ty o Fy 0 Ty isasomicanonical formfir I by and

¢) TV o Fo T isasemicanonical form.

Proof: Finding a semicanonical form N of FF means solving the functional
equation FoT'="To N forTand N, where we have the conditions

1) T(x)=x+---,and

2) N(x) = Jx + N (x), where Jis a Jordan normal form and in the &th
component N (x) of N (x) a monomial x” can have a nonzero co-
efficient d¢,, only if the relation pe = p" ... p! holds, where p; ... p,
are the eigenvalues of [, v=(vy,...,v,), [v| > 2.

This Schréder type equation always has a solution, but in general the
solution is not unique. We can enforce uniqueness, if we require (see [8])
that the coeflicient 7, of x” in the &th component of T'(x) =x+ - - be 0
if pe = p"...p" holds (i.e. if » is an additional monomial for py).
Doing so, we find that each coefficient 7 ,, is a polynomial in the coeffi-
cientsa; ) of Fwith/=1,... 1, |A| <|v|, being rational in py, . . ., p,. The
coefficients of the semicanonical form N are then also uniquely detet-
mined, in fact, the coefficient g4, of an additional monomial x” in the
component N (x) is a polynomial in the coefficients @, of F with
/=1,...,n and || <|v|. Applying this construction to F and F(; for
/21y (for which F; € U, (F)), we find transformations Ty, 121y, of
F() to a semicanonical form N such that lim; .o, Ty =T and
lim; .o, N = N exist, N is a semicanonical form of F, and the Theo-
rem is proved. u
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