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Abstract

A modified Gołab-Schinzel equation on a restricted domain is considered. A new
result on monotonic solutions is proved. The continuous or monotonic solutions can
be used to model some nonlinear processes of meteorology and fluid mechanics.
Symmetries of corresponding nonlinear differential equations are described by the
modified Gołab-Schinzel equation.
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1. Introduction

The Gołab-Schinzel functional equation

f ðxþ yf ðxÞÞ ¼ f ðxÞf ðyÞ; x; y 2 R;

which appears in connection with determining some subgroups or
subsemigroups of the affine group (cf. for instance J. ACZÉL and



J. DHOMBRES [1], Ch. 19), was considered by many authors (cf. for
instance [2, 5, 6, 13]; cf. also [1] for an overview of existing literature
on this equation). It is known that the nontrivial continuous solution
f : R! R is either of the form

f ðxÞ ¼ 1þ cx; or f ðxÞ ¼ max f1þ cx; 0g; x 2 R;

for some real constant c.
Discussing some applications to fluid mechanics with J. SCHWAIGER,

it became apparent that it would be useful to examine the solutions
of the Gołab-Schinzel equation on a restricted domain fðx; yÞ : x � 0;
y � 0g: This problem was then considered by J. ACZÉL and
J. SCHWAIGER [3], by L. REICH [21], and by M. SABLIK [24]
(who determined the general continuous solutions on an interval
containing 0). In some recent papers, the topic has been reconsidered
with different restrictions (cf. J. BRZDEK [7], ANNA MUREŃKO [19],
L. REICH [22]).

In Section 2, making use of results of J. ACZÉL and J. SCHWAIGER

[3], we formulate Theorem 1 for a (pexiderized) modified Gołab-
Schinzel equation on a restricted domain. We prove a new result on
monotonic solutions (Theorem 2) and point to an open problem
concerning the Gołab-Schinzel functional equation.

In Section 3 we present some applications to nonlinear processes of
meteorology and fluid mechanics: evaporation of cloud droplets,
water discharging from a reservoir, and the physical basis of the
clepsydra (water clock). The corresponding nonlinear differential
equations exhibit some symmetries which are expressed by a modified
Gołab-Schinzel functional equation. The intrinsic scale of (solutions
of) a Gołab-Schinzel equation, often denoted as x0 or t0, plays the role
of an extinction time in our illustrative nonlinear processes.

In Section 4 we consider the correspondence of some functional
equations, differential equations, and their solutions.

A pexiderized analogue of the Gołab-Schinzel equation with three
unknown functions, on an unrestricted domain, was given in [1] (p. 340).

A physical application to the problem of relating interval scales
(e.g. centigrades and degrees Fahrenheit) was mentioned in [15]
where also a pexiderized version of the Gołab-Schinzel equation
appears:

Fðxþ sðxÞyÞ ¼ sðxÞFðyÞ; x; y 2 R;

for continuous F; s : R! R, where both F and s are unknown
functions (s acting as a scaling factor). The nontrivial continuous
solution is either
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� the ‘‘modernistic’’ version, treating DANIEL G. FAHRENHEIT

(1686–1736) as a modern scientist (cf. e.g. [11]),

sðxÞ ¼ 1þ cx with some real constant c;

FðxÞ ¼ Fð0Þ sðxÞ ¼ Fð0Þ ð1þ cxÞ;
leading to the modern relation between centigrades x and degrees
Fahrenheit F, namely FðxÞ ¼ 32 ð1þ 9

160
xÞ ¼ 32þ 9

5
x;

or
� the ‘‘traditionalistic’’ version, treating Fahrenheit as a scientist in

the tradition of Newton, avoiding negative temperature values by
fixing 0 degrees Fahrenheit as the lowest temperature possible (cf.
e.g. [8, 14, 25, 27]),

sðxÞ ¼ max f1þ cx; 0g with some real constant c;

FðxÞ ¼ Fð0Þ sðxÞ ¼ Fð0Þmax f1þ cx; 0g;
leading to the traditionalistic relation FðxÞ ¼ max f32þ 9

5
x; 0g.

Apparently, DANIEL G. FAHRENHEIT gradually changed his
scientific views from traditionalistic to modernistic (cf. [4, 10]).

2. A Modified Gołab-Schinzel Functional Equation
and Its Solutions

Now let us consider a (pexiderized) modified Gołab-Schinzel
equation on a restricted domain,

Fðxþ y sðxÞ1=pÞ ¼ sðxÞFðyÞ; x; y � 0; ð1Þ

with a given number p> 0 and with unknown functions s : ½0;1Þ !
½0;1Þ and F : ½0;1Þ ! R: Note: as usual, sðxÞa stands for ½sðxÞ�a.
Remark 1. Let p 2 R, p> 0, be fixed, and suppose that s : ½0;1Þ !
½0;1Þ and F : ½0;1Þ ! R:

(i) If Fð0Þ ¼ 0 then the functions F and s satisfy Eq. (1) iff F ¼ 0
and s is arbitrary.

(ii) If Fð0Þ 6¼ 0 and the functions F and s satisfy Eq. (1) then
sð0Þ ¼ 1.

Proof . Setting y ¼ 0 in (1) gives (i); setting x ¼ y ¼ 0 gives
(ii). 7

We have the following (cf. [3]):
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Theorem 1. Let p 2 R, p> 0, be fixed, and suppose that
s : ½0;1Þ ! ½0;1Þ is continuous, F : ½0;1Þ ! R, and Fð0Þ 6¼ 0.
Then F; s satisfy Eq. (1) iff

sðxÞ ¼ ðmax f1þ cx; 0gÞp; x � 0;

FðxÞ ¼ Fð0ÞsðxÞ; x � 0;

where c 2 R and Fð0Þ 6¼ 0 are arbitrary constants.

Proof . Setting y :¼ 0 in (1) gives

FðxÞ ¼ Fð0ÞsðxÞ; x � 0: ð2Þ

Hence, making use of (1) and the assumption that Fð0Þ 6¼ 0, we infer
that s satisfies the equation

sðxþ y sðxÞ1=pÞ ¼ sðxÞsðyÞ; x; y � 0; ð2aÞ

and, obviously, the function f : ½0;1Þ ! ½0;1Þ, defined by

f ðxÞ :¼ sðxÞ1=p; x � 0; ð3Þ

is continuous and satisfies the classical Gołab-Schinzel functional
equation:

f ðxþ yf ðxÞÞ ¼ f ðxÞf ðyÞ; x; y � 0: ð4Þ

According to ACZÉL and SCHWAIGER [3], Corollary,

f ðxÞ ¼ max f1þ cx; 0g; x � 0;

and, consequently,

sðxÞ ¼ ðmax f1þ cx; 0gÞp; x � 0;

which completes the proof. 7
The main result of this section is

Theorem 2. Let p 2 R, p> 0, be fixed. Suppose that s : ½0;1Þ !
½0;1Þ is monotonic, and F : ½0;1Þ ! R, Fð0Þ 6¼ 0. Then F and s
satisfy Eq. (1) iff either

sðxÞ ¼ 1; x ¼ 0

0; x> 0;

�

or there is a c 2 R such that

sðxÞ ¼ ðmax f1þ cx; 0gÞp; x � 0; ð5Þ
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and, in both cases,

FðxÞ ¼ Fð0ÞsðxÞ; x � 0:

Proof . Suppose that F : ½0;1Þ ! R and s : ½0;1Þ ! ½0;1Þ satisfy
Eq. (1). By the monotonicity of s, the function f : ½0;1Þ ! ½0;1Þ,
defined by (3), is also monotonic. Similarly as in the proof of the
above proposition we show that F must be of the form (2) and the
function f satisfies the Gołab-Schinzel equation (4). By Remark 1, we
have sð0Þ ¼ 1 and, consequently, f ð0Þ ¼ 1: Put

A :¼ fx � 0j f ðxÞ > 0g:
By the monotonicity of f , either A ¼ ½0;1Þ or A ¼ ½0; x0Þ for some
x0 � 0:

If x0 ¼ 0 then

f ðxÞ ¼ 1 for x ¼ 0

0 for x> 0;

�

and, obviously, s :¼ f .
If x0 > 0 then A is a nontrivial interval.
Suppose first that f is not strictly monotonic in A: Then there are

x1; x2 2 A, x1 < x2 such that f ðx1Þ ¼ f ðx2Þ: Then (cf. [1], p. 311), for
all x � x1,

f ðxþ ðx2 � x1ÞÞ ¼ f

�
x2 þ

x� x1

f ðx1Þ
f ðx1Þ

�

¼ f

�
x2 þ

x� x1

f ðx1Þ
f ðx2Þ

�
¼ f ðx2Þf

�
x� x1

f ðx1Þ

�

¼ f ðx1Þf
�

x� x1

f ðx1Þ

�
¼ f

�
x1 þ

x� x1

f ðx1Þ
f ðx1Þ

�
¼ f ðxÞ:

which proves that f is a ðx2 � x1Þ-periodic function. Thus A ¼
ð0;1Þ; and the monotonicity of f together with the relation f ð0Þ ¼ 1
imply that f ¼ 1 on ð0;1Þ: By (3), s ¼ f and, consequently, s is of
the form (5) with c ¼ 0:

Now consider the case when f is strictly monotonic in A: From (4),
for all x; y 2 A, we have

f ðxþ yf ðxÞÞ ¼ f ðxÞf ðyÞ ¼ f ðyþ xf ðyÞÞ;
whence xþ yf ðxÞ ¼ yþ xf ðyÞ: It follows that

f ðxÞ � 1

x
¼ f ðyÞ � 1

y
; x; y> 0:
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Consequently, there is a c 2 R such that
f ðxÞ�1

x
¼ c for all

x 2 A; x 6¼ 0: Since f ð0Þ ¼ 1, we infer that

f ðxÞ ¼ 1þ cx; x 2 A:

If f is (strictly) increasing then, obviously, A ¼ ð0;1Þ, so c> 0,

f ðxÞ ¼ 1þ cx; x � 0;

and, by (3),

sðxÞ ¼ ð1þ cxÞp ¼ ðmax f1þ cx; 0gÞp; x � 0:

If f is strictly decreasing then c< 0 and A ¼ ½0; x0Þ for an x0 2 R.
We shall show that

f ðx0�Þ :¼ lim
x!x0�

f ðx0Þ ¼ 0:

For an indirect argument suppose that f ðx0�Þ > 0: Taking s; t 2
ð0; x0Þ such that

sþ tf ðsÞ> x0

we would get

f ðsþ tf ðsÞÞ ¼ f ðsÞf ðtÞ> 0;

which contradicts the definition of the point x0: Thus

f ðx0�Þ ¼ 0 ¼ f ðx0Þ;
and, by the monotonicity of f ; we have f ðxÞ ¼ 0 for all x � x0: From
(3) we again get that

sðxÞ ¼ ðmax f1þ cx; 0gÞp; x � 0:

In each of these cases the function F is of the form (2). This
completes the proof. 7
Remark 2. Letting formally p!1 in (1), there results a
(pexiderized) Cauchy equation on a restricted domain:

Fðxþ yÞ ¼ sðxÞFðyÞ; x; y � 0; ð6Þ
with unknown functions F; s : ½0;1Þ ! ½0;1Þ:

Apart from the trivial solution F ¼ 0 and arbitrary s, under the
assumption that s is measurable or continuous at least at a point (or
the graph of s is not dense in ½0;1Þ2Þ, the solutions of (6) are

sðxÞ ¼ exp ðcxÞ; FðxÞ ¼ Fð0ÞsðxÞ; x � 0;

where c 2 R and Fð0Þ � 0 are arbitrary constants (a corresponding
result for F : R! R and s ¼ F was obtained in [16]) and, moreover,
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the first solution in Theorem 2, namely sð0Þ ¼ 1, sðxÞ ¼ 0 for x> 0,
and FðxÞ ¼ Fð0ÞsðxÞ for x � 0.

Let us note the following

Remark 3. Suppose that f : R! R satisfies the Gołab-Schinzel
functional equation

f ðxþ yf ðxÞÞ ¼ f ðxÞf ðyÞ; x; y 2 R:

If there is a point x0 2 R such that f ðx0Þ 6¼ 0 and f is differentiable at
x0, then there exists a c 2 R such that either

f ðxÞ ¼ 1þ cx; x 2 R;

or

f ðxÞ ¼ max f1þ cx; 0g; x 2 R:

Proof . (Sketch.) Put A :¼ fx 2 Rj f ðxÞ> 0g: Thus x0 2 A, and it is
easy to see that 0 2 A and f ð0Þ ¼ 1: Since

f ðxþ yf ðxÞÞ � f ðxÞ
yf ðxÞ ¼ f ðyÞ � 1

y
; x 2 A; y 2 Rnf0g;

the following conditions are equivalent

1. there is a point x0 2 A such that f is differentiable at x0;
2. f is differentiable at 0;
3. f is differentiable at every point of the set A:

The differentiability at 0 implies that there is a nontrivial maximal
open interval I � A; I ¼ ða; bÞ; �1 � a< b � 1; such that 0 2 I:
Now, by a similar reasoning as in the proof of Theorem 2, we can
show that

f ðxÞ ¼ 1þ cx; x 2 I:

Assuming, for instance, that b<1 one can prove that f ðxÞ ¼ 0 for all
x � b; c ¼ � 1

b
and a ¼ �1: 7

In connection with this remark we pose the following

Problem 1. Determine all functions f : ½0;1Þ ! ½0;1Þ satisfying
the Gołab-Schinzel functional equation

f ðxþ yf ðxÞÞ ¼ f ðxÞf ðyÞ; x; y � 0;

and such that f ðx0Þ 6¼ 0 and f is differentiable at x0, for some
x0 � 0.
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3. Applications to Nonlinear Processes of Meteorology
and Fluid Mechanics

3.1. Evaporation of cloud droplets

The evaporation of a spherical cloud droplet in a dry environment
may be described in the simplest way by a loss of liquid
mass mðtÞ � 0, with time t, proportional to the droplet surface
AðtÞ � 0:

dm

dt
¼ �cA; t � 0; ð7Þ

where c> 0 is a constant (incorporating the influence of factors like
humidity gradient and diffusion coefficient). The idealized model can
only describe single droplets, without interaction with their (‘‘always
dry’’) environment, e.g. the situation in dissipating fair weather
clouds. (For more specific details cf. [23].)

The mass of a droplet is the product of volume VðtÞ � 0 and
density �> 0 (assumed constant)

m ¼ V� ¼ 4

3
�r3�; ð8Þ

where rðtÞ � 0 is the radius of the droplet. Substituting (8) into (7)
yields

4��r2 dr

dt
¼ �4�cr2;

or simply,

r2

�
�

dr

dt
þ c

�
¼ 0; t � 0; ð9Þ

which is an (ordinary first-order) nonlinear differential equation. The
initial condition is

rð0Þ ¼ R; ð10Þ
where R> 0 is the initial droplet radius. The solution r : ½0;1Þ !
½0;1Þ reads

rðtÞ ¼ R� c
� t; 0 � t � R �

c

0; t>R �
c
;

�
ð11Þ

or equivalently

rðtÞ ¼ max R� c

�
t; 0

� �
¼ R max f1� Ct; 0g; t � 0; ð11aÞ
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where C ¼ c
R� is a positive constant. Evidently, the end of evaporation

is reached (i.e. the droplet vanishes) after time

t0 ¼ R
�

c
¼ 1

C

(the solution remaining valid also for t> t0). An inspection of
Eq. (9) reveals some symmetries: transforming the variables t (by
scaling and translation) and r (by the same scaling) in the following way

½0;1Þ 3 t! �t þ �; ½0;1Þ 3 r ! �r; ð12Þ
where �> 0; � � 0 are parameters, we obtain in place of (9)

�2r2

�
�
�

�

dr

dt
þ c

�
¼ 0

which reduces to (9) again, meaning that (9) is invariant with respect
to the transformation (12). [In other words: (12) denotes symmetries
of (9).] To indicate the possibility that the parameters �; � may
not be chosen independently of each other, we write �ð�Þ instead of
�: Thus, the transformation (12) reads in detail

½0;1Þ 3 t! �ð�Þt þ �; ½0;1Þ 3 r ! �ð�Þr; ð12aÞ
and the invariance of (9) with respect to (12a) may be expressed as

rð�ð�Þt þ �Þ ¼ �ð�ÞrðtÞ: ð13Þ
Changing the notation according to ðr; t; �; �Þ ¼ ðF; y; s; xÞ, the usual
form of the (pexiderized) Gołab-Schinzel functional equation is
obtained,

FðsðxÞyþ xÞ ¼ sðxÞFðyÞ; x; y � 0; ð14Þ
describing, in fact, the symmetries of the nonlinear differential
equation (9). The solution of (13) [or (14)] coincides with (11a). It is
worth noting that the extinction time t0 is finite, and depends on the
initial condition (typical properties of nonlinear processes). Expli-
citly, the scaling factor reads here

�ð�Þ ¼ maxf1� C�; 0g; � � 0;

and the solution (11a) may be written as

rðtÞ ¼ rð0Þ�ðtÞ; t � 0:

Remark 4. It is easy to verify that a transformation T : ½0;1Þ2 !
½0;1Þ2 of the form

Tðt; rÞ :¼ ð’ðtÞ; �ðrÞÞ; t; r � 0;

Gołab-Schinzel Equation 125



where ’; � : ½0;1Þ ! ½0;1Þ are some differentiable functions, is a
symmetry of the differential equation (9) iff there are �; � � 0 such
that

’ðtÞ ¼ �t þ �; t 2 ½0;1Þ; �ðrÞ ¼ �r; r 2 ½0;1Þ:
It is easy to see that the pair ðT ; �Þ where

T ¼ fT �;� j �> 0; � � 0g
denotes the family of all transformations T�;� : ½0;1Þ2 ! ½0;1Þ2
defined by (12), that is

T�;�ðt; rÞ :¼ ð�t þ �; �rÞ; t; r � 0;

and ‘‘�’’ is the composition, forms a non-abelian semigroup (of
symmetries of the differential equation (9)).

In this connection a problem to determine some abelian sub-
semigroups of T arises.

Applying Theorems 1 and 2 with p ¼ 1 we obtain the following

Corollary 1. Suppose that � : ½0;1Þ ! ½0;1Þ is continuous, or
monotonic and not identically zero in ð0;1Þ. Then a one-parameter
subfamily of mappings

fT�ð�Þ;� j � � 0g
(defined by (12a)) of the semigroup ðT ; �Þ is an abelian subsemigroup
iff, for some c � 0,

�ð�Þ ¼ max f1þ c�; 0g ¼ 1þ c�; � � 0:

3.2. A generalized evaporation law

In the evaporation law (7), let us generalize the dependence on the
droplet surface AðtÞ:

dm

dt
¼ �cA1þq=2; t � 0; ð15Þ

where c> 0 and q< 1 are fixed. (We recover (7) by setting q ¼ 0. The
case q ¼ �1 has been treated in [12].) Substituting Eq. (8) into (15)
yields

r2

�
�

dr

dt
þ cð4�Þq=2

rq

�
¼ 0; t � 0; ð16Þ

which is an (ordinary first-order) nonlinear differential equation. The
initial condition is again (10).
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The solution r : ½0;1Þ ! ½0;1Þ reads

rðtÞ ¼ Rðmax f1� Ct; 0gÞ1=ð1�qÞ; t � 0; ð17Þ

with a positive constant

C ¼ ð4�Þq=2 1� q

R1�q

c

�
: ð18Þ

Evidently, the end of evaporation is reached (i.e. the drop vanishes)
after time

t0 ¼
1

C
ð19Þ

(the solution remaining valid also for t> t0). An inspection of Eq.
(16) reveals some symmetries: transforming the variables t and r in
the following way

½0;1Þ 3 t! �1�qt þ �; ½0;1Þ 3 r ! �r; ð20Þ
where �> 0; � � 0 are parameters, we obtain in place of (16)

�2r2

�
�

�

�1�q

dr

dt
þ cð4�Þq=2�qrq

�
¼ 0

which reduces to (16) again, meaning that (16) is invariant with
respect to the transformation (20). [In other words: (20) denotes
symmetries of (16).] To indicate the possibility that the parameters
�; � may not be chosen independently of each other, we write �ð�Þ
instead of �: Thus, the transformation (20) reads in detail

½0;1Þ 3 t! �ð�Þ1�q
t þ �; ½0;1Þ 3 r ! �ð�Þr; ð20aÞ

and the invariance of (16) with respect to (20a) may be expressed as

rð�ð�Þ1�q
t þ �Þ ¼ �ð�ÞrðtÞ: ð21Þ

Identifying ðr; t; �; �Þ ¼ ðF; y; s; xÞ, the usual form of the (pexi-
derized) modified Gołab-Schinzel functional equation is obtained,

Fðxþ sðxÞ1�q
yÞ ¼ sðxÞFðyÞ; x; y � 0; ð22Þ

describing the symmetries of the nonlinear differential equation (16).
The solution of (21) [or (22)] coincides with (17). Again, it is worth
noting that the extinction time (19) is finite, and depends on the initial
condition (typical features of nonlinear processes).

Now we treat the case q! 1: It turns out that this is the (limiting)
linear case, with infinite extinction time (independent of the initial
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condition). For q! 1; the differential equation (16) becomes

r2

�
�

dr

dt
þ 2

ffiffiffi
�
p

cr

�
¼ 0; t � 0; ð23Þ

yielding (apart from the trivial solution r ¼ 0Þ the solution

rðtÞ ¼ R exp ð�CtÞ; t � 0; ð24Þ
for the initial condition rð0Þ ¼ R; with a positive constant

C ¼ 2
ffiffiffi
�
p c

�
¼ 1

t1
;

this time scale t1 being different from the time scale t0 in (19); the
quantity t0 ceases to exist for q! 1 (here t0 !1), and t1 takes over
the role of a physical parameter (time constant) in a natural way. The
symmetries of (23) are, by inspection,

½0;1Þ 3 t! t þ �; ½0;1Þ 3 r ! �r; ð25Þ
[cf. Eq. (20) for q! 1], and the invariance of (23) with respect to
(25) may be expressed as

rðt þ �Þ ¼ �ð�ÞrðtÞ; t � 0: ð26Þ
Identifying ðr; t; �; �Þ ¼ ðF; y; s; xÞ; the usual form (6) of a (pexi-
derized) Cauchy functional equation is obtained, describing the
symmetries of the (linear) differential equation (23). The solution of
(26) [or (6)] coincides with (24).

Remark 5. Note that a transformation T : ½0;1Þ2 ! ½0;1Þ2,

Tðt; rÞ :¼ ð’ðtÞ; �ðrÞÞ; t; r � 0;

where ’; � : ½0;1Þ ! ½0;1Þ are some differentiable functions, is a
symmetry of the differential equation (16) iff there are �; � � 0 such
that

’ðtÞ ¼ �1�qt þ �; t 2 ½0;1Þ; �ðrÞ ¼ �r; r 2 ½0;1Þ:
It is easy to see that the pair ðT ; �Þ where

T ¼ fT �;� j �> 0; � � 0g
denotes the family of all transformations T�;� : ½0;1Þ2 ! ½0;1Þ2
defined by (20), that is

T�;�ðt; rÞ :¼ ð�1�qt þ �; �rÞ; t; r � 0;

and ‘‘�’’ is the composition, forms a non-abelian semigroup (of
symmetries of the differential equation (16)).

Applying Theorems 1 and 2 with p :¼ 1
1�q

we obtain the following
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Corollary 2. Suppose that � : ½0;1Þ ! ½0;1Þ is continuous, or
monotonic and not identically zero in ð0;1Þ. Then a one-parameter
subfamily

fT�ð�Þ;� j � � 0g

(defined by (20a)) of the semigroup ðT ; �Þ is an abelian subsemigroup
iff, for some c � 0 and q< 1,

�ð�Þ ¼ ðmax f1þ c�; 0gÞ1=ð1�qÞ ¼ ð1þ c�Þ1=ð1�qÞ; � � 0:

Remark 6. In the case q! 1 the transformation T : ½0;1Þ2 !
½0;1Þ2,

Tðt; rÞ :¼ ð’ðtÞ; �ðrÞÞ; t; r � 0;

where ’; � : ½0;1Þ ! ½0;1Þ are some differentiable functions, is a
symmetry of the differential equation (23) iff there are �; � � 0 such
that

’ðtÞ ¼ t þ �; t 2 ½0;1Þ; �ðrÞ ¼ �r; r 2 ½0;1Þ:
In this case the pair ðT ; �Þ where T ¼ fT �;� j �> 0; � � 0g where

T�;�ðt; rÞ :¼ ðt þ �; �rÞ;

and ‘‘�’’ is the composition, is a two-parameter abelian semigroup of
symmetries of the differential equation (23).

3.3. Water discharging from a reservoir

In a cylindrical tank, at time t; water is contained up to height h
above an orifice. The outflow velocity v is, according to Torricelli’s
law,

v ¼
ffiffiffiffiffiffiffiffiffi
2gh;

p
h � 0; ð27Þ

where g denotes the acceleration of gravity (a positive constant).
Strictly speaking, Eq. (27) is exact for steady processes, but may be
used as an excellent approximation for (sufficiently slow) unsteady
processes as well (cf. [18, 26, 28]). Due to the continuity of liquid
mass there holds

�A
dh

dt
¼ A0v; t � 0; ð28Þ

where A; A0 are the cross sections of tank and orifice, respectively,
and the minus sign in (28) indicates falling water level.
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Substitution of (27) in (28) gives dh=dt ¼ �ðA0=AÞ
ffiffiffiffiffiffiffiffi
2gh
p

which is,
in general, modified by engineers (to account for losses e.g. due
to flow contraction near the orifice) by a semi-empirical discharge
coefficient of about 0.60 (cf. [20]):

dh

dt
¼ �0:60

A0

A

ffiffiffiffiffiffiffiffi
2gh

p
; t � 0: ð29Þ

Taking as an abbreviation the positive constant

k ¼ 0:60
A0

A

ffiffiffiffiffi
2g

p
;

there results the (ordinary first-order) nonlinear differential equation

dh

dt
¼ �k

ffiffiffi
h
p

; t � 0: ð30Þ

The initial condition is

hð0Þ ¼ H; ð31Þ
where H> 0 is the initial filling height.

The solution h : ½0;1Þ ! ½0;1Þ reads

h ¼ Hðmax f1� Ct; 0gÞ2; t � 0; ð32Þ
with a positive constant

C ¼ k

2
ffiffiffiffi
H
p : ð33Þ

Evidently, the end of discharge is reached (i.e. the tank is empty) after
time

t0 ¼
1

C
¼ 2

ffiffiffiffi
H
p

k
ð34Þ

(the solution remaining valid also for t> t0). An inspection of
Eq. (30) reveals some symmetries: transforming the variables t and h
in the following way

t! �1=2t þ �; h! �h ð35Þ
where �; � > 0 are parameters, we obtain in place of (30)

�

�1=2

dh

dt
¼ �k�1=2h1=2

which reduces to (30) again, meaning that (30) is invariant with
respect to the transformation (35). [In other words: (35) denotes
symmetries of (30).] To indicate the possibility that the parameters
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�; � may not be chosen independently of each other, we write �ð�Þ
instead of �: Thus, the transformation (35) reads in detail

t! �ð�Þ1=2
t þ �; h! �ð�Þh; ð35aÞ

and the invariance of (30) with respect to (35a) may be expressed
as

hð�ð�Þ1=2
t þ �Þ ¼ �ð�ÞhðtÞ: ð36Þ

Identifying ðh; t; �; �Þ ¼ ðF; y; s; xÞ; the usual form of the (pexi-
derized) modified Gołab-Schinzel functional equation is obtained
[cf. Eq. (1)],

Fðxþ y sðxÞ1=2Þ ¼ sðxÞFðyÞ; x; y � 0; ð37Þ
describing the symmetries of the nonlinear differential equation (30).
The solution of (36) [or (37)] coincides with (32). The extinction time
t0 is finite, and depends on the initial condition (typical properties of
nonlinear processes).

Remark 7. A transformation T : ½0;1Þ2 ! ½0;1Þ2,

Tðt; hÞ :¼ ð’ðtÞ; �ðhÞÞ; t; h � 0;

where ’; � : ½0;1Þ ! ½0;1Þ are some differentiable functions, is a
symmetry of the differential equation (30) if f there are �; � � 0 such
that

’ðtÞ ¼ �1=2t þ �; t 2 ½0;1Þ; �ðhÞ ¼ �h; h 2 ½0;1Þ:
It is easy to see that the pair ðT ; �Þ where

T ¼ fT �;� j �> 0; � � 0g
denotes the family of all transformations T�;� : ½0;1Þ2 ! ½0;1Þ2
defined by (35), that is

T�;�ðt; hÞ :¼ ð�1=2t þ �; �hÞ; t; h � 0;

and ‘‘�’’ is the composition, forms a non-abelian semigroup (of
symmetries of the differential equation (30)).

Applying Theorems 1 and 2 with p :¼ 2 we obtain the following

Corollary 3. Suppose that � : ½0;1Þ ! ½0;1Þ is continuous, or
monotonic and not identically zero in ð0;1Þ. Then a one-parameter
subfamily

fT�ð�Þ;� j � � 0g
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(defined by (35a)) of the semigroup ðT ; �Þ is an abelian subsemigroup
iff, for some c � 0;

�ð�Þ ¼ ðmax f1þ c�; 0gÞ2 ¼ ð1þ c�Þ2; � � 0:

3.4. Water clock (clepsydra)

If we choose in (29) the area ratio as

A0

A
¼ bffiffiffi

h
p ð38Þ

(where b > 0 plays the role of a design constant), there results the
simple differential equation for h � 0

dh

dt
¼ �B; t � 0; ð39Þ

with a positive constant B ¼ 0:60b
ffiffiffiffiffiffiffi
2g:
p

Equation (39) describes
a uniformly falling water level (which is expedient for the
measurement of time). From (38) we obtain the shape of the water
reservoir for this case, namely

h ¼ b2

�
A

A0

�2

¼ b2

�
r2

R2

�2

where r is the tank radius at height h, and R is the tank radius at the
initial filling height H, or briefly

h ¼ Kr4; r> 0; ð40Þ
with a positive constant K ¼ b2=R4:

Thus, to construct a water clock, the ideal reservoir should have the
cup-like shape (40) (cf. [17, 18]). Still existing Egyptian water clocks
come close to this requirement (cf. [9, 20]). In ancient Greece, a
water clock of similar construction was called clepsydra (‘‘water
stealer’’), and was later adopted by the Romans (cf. [9]). Water
clocks, sun dials and sand glasses remained the only time-measuring
devices for centuries.

The differential equation (39), with initial condition hð0Þ ¼ H > 0
(initial filling height), has the solution h : ½0;1Þ ! ½0;1Þ

h ¼ max fH � Bt; 0g ¼ H max f1� Ct; 0g; t � 0; ð41Þ
with a positive constant C ¼ B=H: The reservoir is empty after time

t0 ¼
1

C
¼ H

B
: ð42Þ
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An inspection of Eq. (39) reveals some symmetries: transforming the
variables t and h in the following way

t! �t þ �; h! �h; ð43Þ
where �; � are parameters, we obtain in place of (39)

�

�

dh

dt
¼ �B

which reduces to (39) again, meaning that (39) is invariant with
respect to the transformation (43). [In other words: (43) denotes
symmetries of (39).] To indicate the possibility that the param-
eters � and � may not be chosen independently of each other, we
write �ð�Þ instead of �: Thus, the transformation (43) reads in
detail

t! �ð�Þt þ �; h! �ð�Þh; ð43aÞ
and the invariance of (39) with respect to (43a) may be expressed
as

hð�ð�Þt þ �Þ ¼ �ð�ÞhðtÞ: ð44Þ
Identifying ðh; t; �; �Þ ¼ ðF; y; s; xÞ; the usual form of the (pexi-
derized) Gołab-Schinzel functional equation is obtained

Fðxþ ysðxÞÞ ¼ sðxÞFðyÞ; x; y � 0; ð45Þ
describing symmetries of the differential equation (39). The solution
of (44) [or (45)] coincides with (41). The extinction time t0 is finite,
and depends on the initial condition (typical features of nonlinear
processes).

Remark 8. A transformation T : ½0;1Þ2 ! ½0;1Þ2 of the form

Tðt; hÞ :¼ ð’ðtÞ; �ðhÞÞ; t; h � 0;

where ’; � : ½0;1Þ ! ½0;1Þ are some differentiable functions, is a
symmetry of the differential equation (39) iff there are �; � � 0 such
that

’ðtÞ ¼ �t þ �; t 2 ½0;1Þ; �ðhÞ ¼ �h; h 2 ½0;1Þ:
The pair ðT ; �Þ where

T ¼ fT�;� j �> 0; � � 0g
denotes the family of all transformations T�;� : ½0;1Þ2 ! ½0;1Þ2
defined by (43), that is

T�;�ðt; hÞ :¼ ð�t þ �; �hÞ; t; h � 0;
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and ‘‘�’’ is the composition, forms a non-abelian semigroup (of
symmetries of the differential equation (39)).

Applying Theorems 1 and 2 with p ¼ 1 we obtain the following

Corollary 4. Suppose that � : ½0;1Þ ! ½0;1Þ is continuous, or
monotonic and not identically zero in ð0;1Þ. Then a one-parameter
subfamily

fT�ð�Þ;� j � � 0g
(defined by 43a) of the semigroup ðT ; �Þ is an abelian subsemigroup
iff, for some c � 0,

�ð�Þ ¼ max f1þ c�; 0g ¼ 1þ c�; � � 0:

4. Final Remarks

In Section 3, we have shown how the symmetries of certain differen-
tial equations may be expressed by the (modified) Gołab-Schinzel
functional equation. Now we show that these differential equations can
be derived from the Gołab-Schinzel functional equation.

Suppose that f : ½0;1Þ ! ½0;1Þ is a continuous or monotonic
solution of Eq. (4). [If we want to start with (1), we can go to (4) via
(2) and (3).] Applying, respectively, the result of [3] or Theorem 2 we
infer that we have either f ðxÞ ¼ max f1þ cx; 0g for all x � 0 or
f ¼ 0 in ½0;1Þ. It follows that f is differentiable everywhere except
for at most one point x0 :¼ supfx> 0 : f ðxÞ> 0g and, if x0 is finite,
the left derivative f 0�ðx0Þ and the right derivative f 0þðx0Þ exist. For
convenience assume in the sequel that f 0ðx0Þ :¼ f 0�ðx0Þ: Let us fix an
arbitrary x � 0: Differentiating both sides of Eq. (4) with respect to
y � 0 we obtain

f 0ðxþ yf ðxÞÞf ðxÞ ¼ f ðxÞf 0ðyÞ:

Setting here y ¼ 0 gives the differential equation

f ðxÞ½f 0ðxÞ � f 0ð0Þ� ¼ 0; x � 0:

Suppose now that f : ½0;1Þ ! ½0;1Þ satisfies this differential
equation’s initial condition f ð0Þ ¼ 1: Putting c :¼ f 0ð0Þ we infer that
f must be of the form

f ðxÞ ¼ max f1þ cx; 0g; x � 0;

which coincides with the nontrivial solution of (4).
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In a similar way Eq. (2a) for s : ½0;1Þ ! ½0;1Þ and p> 0 leads to
a differential equation

s0ðxÞ ¼ s0ð0Þ½sðxÞ�1�1=p; x � 0;

integrating to

sðxÞ ¼ ðmax f1þ cx; 0gÞp; x � 0;

with some real constant c :¼ s0ð0Þ
p

, which coincides with the nontrivial
continuous solution of (2a). The limiting case p!1 yields a
differential equation for s : ½0;1Þ ! ½0;1Þ,

s0ðxÞ ¼ s0ð0ÞsðxÞ; x � 0;

integrating to sðxÞ ¼ exp ðcxÞ; x � 0 (with some real constant
c :¼ s0ð0Þ), which coincides with the continuous (or measurable)
solution of the Eq. (6) for F ¼ s;

sðxþ yÞ ¼ sðxÞsðyÞ; x; y � 0:

Traditionally, differential equations prevail in modelling time-
dependent processes. On the other hand, functional equations can
serve the same purpose. Looking at the differential equations of the
previous section, denote one of them by ðAÞ, the respective functional
equation by ðBÞ, and the solution by ðCÞ; we have a correspondence:
the traditional approach ðAÞ ! ðCÞ can be supplemented by
considering symmetry properties of ðAÞ and ðCÞ, expressed by ðBÞ:
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