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Abstract

In a recent paper Aleksandar Cvetkovié, Predrag Rajkovi¢ and Milos Ivkovié proved
that for the Catalan numbers C, the Hankel determinants of the sequence C, + C,+|
are Fibonacci numbers. Their proof depends on special properties of the cor-
responding orthogonal polynomials. In this paper we give a generalization of their
result by other methods in order to give more insight into the situation.
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1. A Survey of Known Results
The classical Fibonacci polynomials F,(x,s) = S —o ("1 %)
x x""1=2kgk are intimately related to the Catalan numbers

C, = ﬁ (2n” ): The Fibonacci polynomials F,,(x, 1), n > 0, are a basis

of the vector space of polynomials. If we define the linear
functional L by L(F,y1) = 6,0 then we get L(x**"')=0 and
L(x*) = (=1)"C,.

We will now sketch how this fact can be generalized.
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Given any sequence t = (#(n)),~, of positive real numbers we

define the #-Fibonacci polynomials (cf. [5]) by
Fo(x,t) = xFy_1(x,1) + t(n — 3)F,_2(x, 1) (1.1)
with initial conditions Fy(x,t) = 0, Fy(x,1) = 1.

If 5 is a real or complex number and #(n) = s for all n € N this
reduces to the classical Fibonacci polynomials F,(x,s) introduced
above.

The first terms are

Fa(x,t) =x, F3(x,t) =x*>+1(0), Fu(x,1) =x>+xt(0) +xt(1),...
We state for later purposes the recurrences for the subsequences with
even or odd indices.
Fon(x,1) = (x> +t(2n — 4) +1(2n — 3))Fap_s(x,1)—
—t(2n — 4)t(2n — 3)Fap—4(x, 1) (1.2)
and
Fopp1(x,1) = (x> +1(2n — 3) 4+ t(2n — 2))Fu_1 (x, 1) —
— l(zl’l — 3)l(2l’l — 4)F2n_3(x, t). (13)
The polynomials F,(x,t), n > 0, are a basis of the vector space P of
all polynomials in x. We can therefore define a linear functional L on
P by
L(F,) = 6n,. (1.4)
- . Fu(x,1)
Let Fn(x, t) = W .
Then we have
an = t(n — I)Fn_._l — I:—'n—l-

Define now the numbers a,; = (—1)[#WL(x”IA7k+1), where [x] de-
notes the least integer greater than or equal to x.
They satisfy

Aok = 50.,1(
Anje = Ap—1 k-1 + t(K)ap—1 41 (1.5)

where, a,; = 0 if kK <O0.

They have an obvious combinatorial interpretation. Consider all
nonnegative lattice paths in R? which start in (0, 0) with upward steps
(1,1) und downward steps (1,—1). We associate to each upward
step ending on the height k the weight 1 and to each downward step
ending on the height k the weight 7(k). The weight of the path is the
product of the weights of all steps of the path. Then a, is the weight
of all nonnegative lattice paths from (0,0) to (n,k).
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It is clear that az,y10 = 0. If we set ay,0 = C,(f), then C,(1),
which we call a t-Catalan number (cf. [4]), is an analogue of the
Catalan number C, = ﬁ (2n"), because it is well known that the
number of such paths equals C,,.

It is easy to give a recurrence for these -Catalan numbers. To this
end decompose each lattice path from (0,0) to (2n,0) into the first
path which returns to the x-axis and the rest path. The first path goes
from (0,0) to (2k+2,0), 0 <k <n—1, and consists of a rising
segment followed by a path from (0,0) to (2k,0) (but one level
higher) and a falling segment.

Thus
Cu(t) =1(0) Y Cr(Et)Cpi—1(t), Co(r) =1. (1.6)

Here Et denotes the shifted sequence Er = (¢(1),#(2),...).
This is an analogue of the recursion

C, = CCii—1, Co=1,
=0

for the classical Catalan numbers.
Since

L) =0 and L) = (—=1)"Cu(t) we get

Theorem 1. Let L be the linear functional on the vector space P of all
polynomials defined by (1.4). This can be characterized by

L(x™) = (=1)"C,(1), LM =0 (1.7
forall n € N.

This theorem (cf. [5]) gives a connection between ¢-Fibonacci
polynomials and #-Catalan numbers. The purpose of this paper is to
show another connection between these numbers.

First we propose an elementary method using LU-factorization (cf.
e.g. [8], where also other methods for treating Hankel determinants
are listed). To this end we generalize two well-known triangular
Catalan matrices (cf. e.g. [1, 4, 9]):

Let

C(n’k) = A 2k- (18)
This gives c¢(n,0) = C,(1).
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Then it is clear that the following recursion holds:
c(0,k) = [k =0]
c(n,0) =t(0)c(n —1,0) +¢(0)t(1)c(n —1,1), n >0,
c(nk) =cn—1,k—1)+ (t(2k — 1) + 1(2k))c(n — 1,k) +
+1(2k)t(2k+ 1)c(n—1,k+1), n>0, k>0. (1.9)

We may interpret c(n, k) as the weight of another sort of nonnegative
lattice paths from (0,0) to (n,k) with upward, downward and
horizontal steps, where each upward step has weight 1, each
downward step ending at height k has weight 7#(2k)#(2k + 1) and
each horizontal step in height k has Weight t(2k — 1) + t(2k). Setting

cc(n, k) = /1(0) 1(2k — 1)c(n, k) (1.10)

we get another weight on these lattlce paths which is symmetric, i.e.
upward steps and downward steps between the same heights have the
same weight. Furthermore we have cc(n,0) = ¢(n,0) = C,(t). They
satisfy

cc(0,k) = [k = 0]

cc(n,0) = t(0)cc(n —1,0) + /1(0)r(1)c(n — 1,1), n >0,
ce(n, k) = \/1(2k — 2)t(2k — 1)cc(n — 1,k — 1) +
+ (#(2k — 1) + #(2k))cc(n — 1,k) +
+ 12k 12k + 1)e(n—1,k+1), n>0, k>0.
(1.11)

If we decompose a lattice path from (0,0) to (m + n,0) into a path
from (0, 0) to (m, k) and a second path from (m, k) to (m + n,0), then
the weight of the second path is identical with cc(n, k) because of the
symmetry. This gives the identity

ch(m,k)cc(n,k) = cc(m +n,0) (1.12)
k>0

or equivalently
Zc(m, k)e(n,k)t(0)e(1) - t(2k — 1) = c(m+ n,0) = Cppyn(2).
k>0

This may be interpreted in the following form:
Consider the triangular matrices

P, = (ccli )i 2 (1.13)



Some Relations Between Generalized Fibonacci and Catalan Numbers 147

Then

PPy, = (Cisj(1)i 1 o- (1.14)

This leads immediately to the determinant of the Hankel matrix

n—1

det (Cij(1))! Ly = detP, P!, = H; 1(2k—1)  (1.15)

For the second Catalan matrix let
d(n, k) = axyi126+1- (1.16)
Then
d(n,0) = aspt11 = a0 = Cor1 (). (1.17)
The recursion takes now the following form:
d(0,k) = t(0)[k = 0]
d(n,0) = (¢(0) +¢(1))d(n — 1,0) + t(1)t(2)d(n — 1,1), n>0,
dn,k) =d(n— 1,k — 1)+ (t(2k) +t(2k + 1))d(n — 1,k) +
+1(2k+ D)t(2k+2)dn—1,k+1), n>0, k>0.
(1.18)

Setting

t(1)---1(2k)

dd(n,k) = d(n,k) (1.19)

we get another weight on these lattice paths which is symmetric and
satisfies dd(0,k) = [k = 0].
This gives the identity

> " dd(m,k)dd(n, k) = dd(m + n,0) = Cpns1 (1) (1.20)
k>0

or equivalently

S d(m,k)d(n, k)i(1) - - - 1(2k) = 1(0)d(m + n,0) = 1(0)Consnis ().
k>0

This result may be interpreted in the following form:
Consider the triangular matrices

Qn = (dd(i.))); 1. (1.21)
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Then
0n 0l = (Ciyjr (1)} g (1.22)
and we get the determinant of the second Hankel matrix

det(Ciyji1 (1))} g =det 0,0}, = Hr 1(2)---1(2k—2). (1.23)

Remark. This implies that
detQ,Q! = 1(0)1(2)---#(2n — 2)det P, P.. (1.24)
The most important special cases are the following:

1) t(n) = ¢"s: The Carlitz q-Fibonacci polynomials and the
Carlitz g-Catalan numbers.
Here we get ([2-4])

o1y g8 B )00

q s e q i=0 s
and
n—1
n n(n— n+ 2 l2+( )
[J10)(1) 12k —2) ="+ 5" =¢ 2 s
k=0

It should be noted that in this case

k
Fu(x,s,9) =) [" el ]q 2/ g2kt

k=0 k
2) Another interesting special case arises for
1(2k) = rg*, 2k +1) = s¢*,

where r and s are positive real numbers.
The corresponding Fibonacci polynomials are

0,1,x, x> + r,x° + rx + sx,x* + rx® + gre® + sx> + gr?,

The corresponding Catalan numbers C,(q,r,s) (the Polya-
Gessel g-Catalan numbers) are

1,r, P+ rs, P4 2r%s + qrzs + rs2,
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They satisfy the recurrence (cf. [4, 7])

n—1

Cn+1(q= r, S) = rCn(Q7 r, S) + SquCk<q7 r,s)C,,,k(q, r, S).
k=0

In this case we have ([4])

n—1

HZ‘(O)t(l) 12k —1) = qz(g)(m)@)

ol (n+1 n
n t(O)t(1)~~~t(2k_2):qkz;)kr< 2 )S<2)_

2. The Main Theorem

Recently it has been proved ([6]) that for the sequence

a(n) = n]? (Zn") + nlq (2::12) = C, + C,, the Hankel determinants

are explicitly given by ho(n) = Fa,11 and hy(n) = Fapp with
Fibonacci numbers F,. We will now generalize these results:

Theorem 2. Consider the sequence

a(n,z,t) = Cy(t) + 2Cpi1(2). (2.1)

Let
ho(n,2,1) = (a(i+j,2,0))} 2o (22)

and
hi(n,z,0) = (a(i+j+1,2,0) (2.3)

be the associated Hankel matrices.
Then we have

n—1

detho(n,2,1) = Far1 (1,20) [[HO)(1) -1k — 1) (2.4)
k=0

and

n

dethy(n,z,1) = Fanpa(1,2t) [ [ 1(0)e(1) - - - #(2k — 2). (2.5)
k=0
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To prove this observe the following fact (cf. [1]):
The matrix R, := (cc(i + 1, ])):’;:10 satisfies R, = P,J,, where

So Do 0 e 0
Vo S1 U1 cee 0

.In = 0 U1 \Y) s 0 (26)
0O 0 0 - s,

with so = #(0), s = #(2k — 1) + #(2k), k > 0, and
v = \/1(20)1(2i + 1).
Furthermore we have
hi(n,0,) = (Ciji1 (1) 120 = RuPjy = PuduP,.

Now it is easily verified that detJ,, = #(0)#(2) - - - #(2n — 2). We have
thus another proof of (1.24).
Now we have

ho(n,z,t) = P,P!, + zP,J, P!, = P,(I + 2J,)P.,. (2.7)
We must now compute
d(n) = det(I + zJ,,). (2.8)
If we expand with respect to the last row we get the recursion
din)=(1+z(t(2n—3)+t(2n—2))d(n — 1)—
— 221(2n — 3)t(2n — 4)d(n — 2) (2.9)
with initial values
d(1) =1+2zt(0), d(2)=1+z(t0) + £(1) +#(2)) + 2°£(0)#(2)
Therefore we get
d(n) = Fp1(1,21). (2.10)

In the same way we may obtain the second Hankel determinant.
Finally we note another interesting Hankel determinant.

Theorem 3. Set
b(2n7Z7t) - Cn(t) +ch+1(t)7
0

b(2n+1,z,1) = 0. (2.11)
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Define the Hankel matrices

ko(n,z, 1) = (b(i +j,2, 1)) (2.12)
and
ki(n,z,0) = (b(i+j+1,2,0))} Lo (2.13)
Then we get
detko(n,z,1) = t(0)" 't(1)" -+ t(n — 1)Fpa1 (1, 20) Fria(1, 22)
(2.14)
and

detk;(2n,z,1)
= (=1)"1(0)" (1) 21(2)* %+ 1(2n — 3)*1(2n — 2)* Fapya (1, 20)*.
(2.15)
The determinants with odd index are 0.

The proof follows immediately from Theorem 2. To this end write
the rows and columns with even index first and then the others in their
natural order. Then the first matrix splits into one of the form
ho(k,z,t) and one of the form h;(l,z,¢). For n = 2m the second
matrix splits into two matrices h(m,z,t). For n odd one of the two
matrices has a row of zeroes.

3. Another Method of Proof

After completion of this paper Christian Krattenthaler has remarked
that some of our results become almost trivial modulo a theorem
of Lindstrdm-Gessel-Viennot on non-overlapping lattice paths (see
[10] for a detailed account of this theorem). We now sketch this
approach.

Theorem (Lindstrom-Gessel-Viennot). Given initial points Ay,
Ai,...,A,_1 and endpoints Ey,E\, ..., E, . Then

det(P(A; — E))) = Z sgno - PY(A — E,),

€S,

where P(A; — E;) denotes the weight of all admissible lattice paths
from A; to E; and P*(A — E,) denotes the weight of all families
(Po, P1,...,P,_1) of nonoverlapping lattice paths such that P; goes
from A; to E;y fori=0,1,...,n—1.
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If you choose A; = (—2i,0) and E; = (2i,0), i =0,1,...,n—1,
then P(A; — E;) = C;yj(r). In this case it is evident (by induction)
that the only possible ¢ is the identity and P; : A; — E; is the (highest
possible) path which goes 2i steps upwards to the point (0,2i) and
then downwards to E; = (2i,0). The weight of this family of paths is
evidently given by (1.15).

If you choose A; = (—2i,0) and E; = (2i +2,0),i=0,1,...,n— 1,
then P(A; — E;) = Ciyj+1(¢). In this case it is also evident (by
induction) that the only possible ¢ is the identity and P; : A; — E; is
the (highest possible) path which goes 2i + 1 steps upwards to the
point (0,2i + 1) and then downwards to E; = (2i + 2,0). The weight
of this family of paths is evidently given by (1.23).

For the Hankel determinant det(C;.;(r) + zCiyj11(f)) we use the
linearity in the columns to write it as a sum of 2" simpler deter-
minants. Most of these determinants are 0, because two adjacent
columns are proportional. What remains is the sum

det(Ciyj(t) + 2Ciyj1 (1)) = D Busd, (3.1)
k=0

where
Bk = det(Ci(1)Cis1 (1) - - - Cosni—1 (£) Cienier1 (1) - - - Cign(2)).

For the determinant det(Cj,j11(f) + zCitj42(f)) we get in the same
way

det(Ci+j+1 (t) + ZCi+j+2(f)) = Z Dnyka (32)
k=0
with

Dy = det(Cip1 (1)Cisa(t) -+ Cipn—i (1) Citn—rs2(t) - -+ Cirns1 (1))

Now we apply again the Lindstrom-Gessel-Viennot theorem. To
obtain B,; we choose A; = (—2i,0) and E; = (2j + 2[j > n — k).
For D, we choose A; = (—2i,0) and E; = (2j + 2+ 2[j > n —k]).

It is again evident that in both cases the only possible permutation
is the identity. We study first B, ;. For each family of nonintersecting
paths the path P; begins with 2i upward steps. After this there are two
possibilities: Either the next step of P, is an upward step, case 1, (in
which case P,_; is of maximal height 2n — 1 and the 2n — 1 other
steps are downward steps), or the next step of P,_; is a downward

step (case 2).
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In case 1 the weight of the family is ( 0 t(/ ) n—1jk—1 since
there are no restrictions for the other paths. fn case 2 the next step
of each P; must be a downward step because the paths are
nonintersecting. In this case we replace the first 2i + 1 steps of the
path P; which go from (—2i,0) to (1,2i — 1) fori=1,...,n— 1 by
the path which starts in (—2i+2,0) and has only upward steps
ending in (1,2i — 1). The rest of the path remains unchanged. This
gives D,_1 ;. But we have ignored the weight of the downward steps
ending in height 1,3,...,2n — 3. Thus we get

By = <2ﬁ2t(] ) i1 k1 + (ﬁt(Zi—!— 1)>Dn_17,{. (3.3)

i=0

The same procedure applied to D, gives

Dy = <2]n__[1 t(]) -1 k—1 + (ﬁt(%))Bn,k- (3.4)

i=0
Let now
B,
By = —— A (3.5)
T [Lizo t(0)e(1) -+ - 1(2k — 1)
and
D
D¥, = . 3.6
k= T fO)(1) 12k~ 2) (36)
Then we get
B;k,k = D;::l,k +1(2n — 2)3:71,1(71
D;k,k = B;k,k +1(2n — 1)Dj—1,k—1- (3.7)
Let now

:ZD:!kaka and fo,11 = ZBnkz

Then we get the recurrence

fn :fn—l + Zt(n - 3)fn—2

Since f3 = F3(1 zt) and fy = F4(1,zt) we see that f, = F,(1,z¢) for
all n. This is equivalent with (2.4) and (2.5).

The #-Fibonacci polynomials can be interpreted as the weight of
Morse code sequences (cf. [5]), i.e. sequences of dots (e) which
occupy one point and dashes (—) which occupy two points.
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Let v be a Morse code sequence on some interval {0, 1,...,k — 1}.
If the place i € {0, 1,...,k — 1} is occupied by a dot we set w(i) = x,
if it is the initial point of a dash we set w(i) = #(i). In the other cases
let w(i) = 1. Now the length of v is k and the weight of v is defined
as the product of the weights of all places of the interval, i.e.
w(v) = Hf.:ol w(i). For example the weight of the sequence
—e—ee— —e of length 12 is x*#(0)#(3)#(7)#(9). The weight of all
Morse code sequences with length n — 1 is given by the ¢-Fibonacci
polynomial F,(x,1).

Christian Krattenthaler (personal communication) has given a
bijective proof of Theorem 2 by associating a Morse code sequence
with each family of nonintersecting paths.
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