Anzeiger Abt. II (2001) 138: 3-6

Anzeiger

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2002 Printed in Austria

On Continuous Solutions of a Conditional Gołąb-Schinzel Equation

By

J. Brzdęk

(Vorgelegt in der Sitzung der math.-nat. Klasse am 5. April 2001 durch das w. M. Ludwig Reich)

Abstract

We determine the continuous solutions $f:(0,+\infty)\to\mathbb{R}$ of equation (3). The proof of the result is based on the well known theorem of J. Aczél, describing the continuous cancellative associative operations on a real interval.

1991 Mathematics Subject Classification: 39B22.

*

Let \mathbb{R} denote the set of reals. In connection with a problem raised by P. Kahlig, J. Aczél and J. Schwaiger [3] have determined the continuous solutions $f: \mathbb{R} \to \mathbb{R}$ of the following conditional Gołąb-Schinzel equation

$$f(x+f(x)y) = f(x)f(y) \quad \text{for } x, y \in [0, +\infty). \tag{1}$$

A more general conditional version of the Gołąb-Schinzel equation has been studied by L. Reich [13] (see also [14]). He has found the continuous solutions $f:[0,+\infty)\to\mathbb{R}$ of the functional equation

$$f(x+f(x)y) = f(x)f(y)$$
 whenever $x, y, x+f(x)y \in [0, +\infty)$. (2)

For more details concerning the Gołąb-Schinzel equation refer to [2]–[5], [12]–[15] and [7].

We present a different and shorter proof of the results in [3] and [13]. Moreover, we consider the following generalization of (1) and (2):

$$f(x+f(x)y) = f(x)f(y)$$
 whenever $x, y, x+f(x)y \in \mathbb{R}^+$, (3) where $\mathbb{R}^+ = (0, +\infty)$.

The main tool in our proof is the given below well known theorem of J. Aczél [1] (see also [11]).

Theorem 1. Let L be a nontrivial real interval and let $\circ: L \times L \to L$ be a continuous cancellative associative operation. Then there exists a continuous bijection $h: L \to J$ such that

$$x \circ y = h^{-1}(h(x) + h(y))$$
 for $x, y \in L$,

where J is a (necessarily unbounded) real interval.

For some further examples of applications of the Aczél Theorem in solving some functional equations of similar type see [6], [8], [9], [10].

The next theorem contains the main result of this paper.

Theorem 2. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a continuous solution of (3). Then either $f \equiv 0$ or there exists $c \in \mathbb{R}$ such that one of the following two conditions holds:

$$1^{\circ} f(x) = cx + 1 \quad for \ x \in \mathbb{R}^+;$$

 $2^{\circ} f(x) = \sup \{cx + 1, 0\} \quad for \ x \in \mathbb{R}^+.$

Proof: Suppose that $f(w) \neq 0$ for some w > 0. Take a sequence $\{x_n\} \subset \mathbb{R}^+$ with $x_n \to 0$. Then

$$f(w) = f(\lim w + f(w)x_n) = \lim f(w + f(w)x_n) = \lim f(w)f(x_n)$$

and consequently

$$1 = f(w)^{-1} \lim f(w)f(x_n) = \lim f(x_n).$$

Whence

$$\lim_{y \to 0^+} f(y) = 1. \tag{4}$$

Let $B:=f^{-1}(\{0\})$. Assume that $B\neq\emptyset$ and put $a=\inf B$. From (4) we infer a>0. Let I=(0,a) and $A=\{x+f(x)a:x>0\}$. Then f(a)=0,

$$f(x) > 0 \quad \text{for } x \in I, \tag{5}$$

$$A$$
 is connected. (6)

Since $a = a + f(a)a \in A$ and

$$f(x+f(x)a) = f(x)f(a) = 0 \quad \text{whenever } x+f(x)a > 0, \quad (7)$$

from (5) and (6) we derive

$$a \in A \subset [a, +\infty).$$
 (8)

If x + f(x)a = a for every x > 0, we obtain 1° with $c = -a^{-1}$. So it remains to consider the cases: (i) $B \neq \emptyset$ and $A \setminus \{a\} \neq \emptyset$; (ii) $B = \emptyset$.

Suppose that (i) holds and $f(y) \neq 0$ for some y > a. Then, by (6), (7) and (8), there is $b \in (a, y)$ such that

$$[a,b] \subset A \subset B. \tag{9}$$

Put $D = \{x + f(x)y : x \in I\}$. Note that $x + f(x)y \to a$ if $x \to a^-$ and, on account of (4), $x + f(x)y \to y$ if $x \to 0^+$; whence $b \in (a, y) \subset D$. This brings a contradiction, because, by (5), $0 \notin f(I)f(y) = f(D)$ and, by (9), f(b) = 0. Consequently $B = [a, +\infty)$.

Thus we have proved that, in either case, $L := \mathbb{R}^+ \setminus B$ is an interval. So, by (4), $f(L) \subset \mathbb{R}^+$ and consequently $f(x+f(x)y) = f(x)f(y) \neq 0$ for $x, y \in L$. Hence $x+f(x)y \in L$ for $x, y \in L$, which means that we may define a binary operation $\circ : L \times L \to L$ by:

$$x \circ y = x + f(x)y.$$

Take $x, y, z \in L$. If $x \circ y = x \circ z$, then clearly y = z. Next, if

$$y + f(y)x = y \circ x = z \circ x = z + f(z)x, \tag{10}$$

then $0 \neq f(y)f(x) = f(y \circ x) = f(z \circ x) = f(z)f(x)$ and consequently f(y) = f(z); whence, by (10), y = z. Finally,

$$(x \circ y) \circ z = x + f(x)y + f(x + f(x)y)z$$

= $x + f(x)(y + f(y)z) = x \circ (y \circ z).$

So we have shown that the operation is cancellative and associative. Since it is continuous, by Theorem 1, it is commutative, which means that

$$x + f(x)y = y + f(y)x \quad \text{for } x, y \in L.$$
 (11)

Fix $y \in L$ and put $c = (f(y) - 1)y^{-1}$. Then (11) implies

$$f(x) = cx + 1$$
 for $x \in L$.

This yields the statement.

Remark. Having proved that L is an interval, instead of applying the Aczél Theorem, we may complete the proof of Theorem 2 in

the same way as in [3], using [3, Lemmas 1 and 2] (then we need only to consider the case $f(x_0) > 0$ in the proof of Lemma 1).

References

- [1] Aczél, J.: Sur les opérations définies pour nombres réels. Bull. Soc. Math. France **76**, 59–64 (1949).
- [2] Aczél, J., Gołąb, S.: Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms. Aequationes Math. 4, 1–10 (1970).
- [3] Aczél, J., Schwaiger, J.: Continuous solutions of the Gołąb-Schinzel equation on the nonnegative reals and on related domains. Sitzungsber. Öster. Akad. Wiss. 208, 171–177 (1999).
- [4] Baron, K.: On the continuous solutions of the Gołąb-Schinzel equation. Aequationes Math. 38, 155–162 (1989).
- [5] Brillouët, N., Dhombres, J.: Équations fonctionnelles et recherche de sousgroupes. Aequationes Math. 31, 253–293 (1986).
- [6] Brillouët-Belluot, N., Ebanks, B.: Localizable composable measures of fuzziness II. Aequationes Math. 60, 233–242 (2000).
- [7] Brzdęk, J.: Subgroups of the group Z_n and a generalization of the Gołąb-Schinzel functional equation. Aequationes Math. **43**, 59–71 (1992).
- [8] Brzdęk, J.: On continuous solutions of some functional equations. Glasnik Mat. **30**, 261–267 (1995).
- [9] Brzdęk, J.: On the Baxter functional equation. Aequationes Math. 52, 105–111 (1996).
- [10] Brzdęk, J.: On some conditional functional equations of Gołąb-Schinzel type. Ann. Math. Siles. 9, 65–80 (1995).
- [11] Craigen, R., Páles, Z.: The associativity equation revisited. Aequationes Math. 37, 306–312 (1989).
- [12] Gołąb, S., Schinzel, A.: Sur l'équation fonctionnelle f(x + yf(x)) = f(x)f(y). Publ. Math. Debrecen **6**, 113–125 (1959).
- [13] Reich, L.: Über die stetigen Lösungen der Gołąb-Schinzel-Gleichung auf $\mathbb{R}_{\geq 0}$. Sitzungsber. Öster. Akad. Wiss. **208**, 165–170 (1999).
- [14] Reich, L.: Über die stetigen Lösungen der Gołąb-Schinzel-Gleichung auf ℝ und auf ℝ_{>0}. Sitzungsber. Öster. Akad. Wiss. **138**, 7–12 (2001).
- [15] Wołodźko, S.: Solution générale de l'équation fonctionnelles. Aequationes Math. 2, 12–29 (1968).

Author's address: Dr. J. Brzdęk, Department of Mathematics, Pedagogical University, Podchorażych 2, 30-084 Kraków, Poland.