Sitzungsber. Abt. II (2001) 210: 61-83

Sitzungsberichte

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2002 Printed in Austria

Recurrences for Some Sequences of Binomial Sums

By

J. Cigler

(Eingereicht in der Sitzung der math.-nat. Klasse am 11. Oktober 2001 durch das w. M. Johann Cigler)

Abstract

We prove that the sequences

$$a(n, i, l, m, z) = \sum_{k \in \mathbb{Z}} {n \choose \left\lfloor \frac{n + ik + l}{m} \right\rfloor} z^k \in \mathbb{Q}[z, z^{-1}]$$

satisfy a linear recurrence of order i with constant coefficients and show how these coefficients can be computed.

Mathematics Subject Classifications: 05A10, 11B37, 11B39, 39A10. Key words: Recurrence, Lucas polynomial, Fibonacci polynomial, binomial coefficient, binomial sum, difference operator.

0. Introduction

Our starting point are the following remarkable identities for the Fibonacci numbers F_n (cf. [1] and [5]):

$$F_n = \sum_{k \in \mathbb{Z}} (-1)^k \left(\left| \frac{n}{n+5k+2} \right| \right)$$
 (0.1)

and

$$F_{n+1} = \sum_{k \in \mathbb{Z}} (-1)^k \left(\left| \frac{n}{2} \right| \right)$$
 (0.2)

The purpose of this paper is to put these identities into a general context in order to give an "explanation" of these formulas. We prove that the sequences $a(n,i,l,m,z) = \sum_{k \in \mathbb{Z}} \binom{n}{\lfloor \frac{n+ik+l}{m} \rfloor} z^k$ satisfy a linear recurrence of order i with constant coefficients and show how these coefficients can be computed. Some special cases have previously been obtained by G. E. Andrews [1] with other methods. I want to thank G. Kowol for some useful hints and Professor Andrzej

1. Sums of the Form
$$\sum_{k \in \mathbb{Z}} {n \choose \lfloor \frac{n+ik+l}{2} \rfloor} z^k$$

We study first the polynomials

Schinzel for providing a proof of Lemma 7.2.

$$a(n,i,l,z) = a(n,i,l,2,z) = \sum_{k \in \mathbb{Z}} {n \choose \left\lfloor \frac{n+ik+l}{2} \right\rfloor} z^k \in \mathbb{Q}[z,z^{-1}],$$

$$(1.1)$$

where $i \ge 1$ and l are integers.

It is easy to see that

$$a(n,2,l,z) = (1+z)^n z^{-\lfloor \frac{n+l}{2} \rfloor}$$
 (1.2)

There are some obvious relations between some of these polynomials. E.g. we have

$$a(n, i, l, z) = a(n, 2i, l, z^{2}) + za(n, 2i, l + i, z^{2})$$
(1.3)

For

$$a(n, i, l, z) = \sum \left(\left\lfloor \frac{n}{2} + \frac{l + 2ki}{2} \right\rfloor \right) z^{2k} + \sum \left(\left\lfloor \frac{n}{2} + \frac{l + (2k+1)i}{2} \right\rfloor \right) z^{2k+1} =$$

$$= a(n, 2i, l, z^2) + za(n, 2i, l+i, z^2).$$

A trivial relation is

$$a(n, i, l - i, z) = za(n, i, l, z).$$
 (1.4)

Therefore we only need to consider $l \in \{0, 1, ..., i-1\}$.

It follows that

$$a(n,1,l,z) = a(n,2,l,z^{2}) + za(n,2,l+1,z^{2}) =$$

$$= (1+z^{2})^{n} \left(z^{-2\lfloor \frac{n+l}{2} \rfloor} + z^{1-2\lfloor \frac{n+l+1}{2} \rfloor}\right) =$$

$$= (1+z)(1+z^{2})^{n}z^{-n-l}.$$

Thus

$$a(n, 1, l, z) = (1+z)(1+z^2)^n z^{-n-l}.$$
 (1.5)

In other cases we cannot hope to find explicit formulas. But it turns out that they satisfy simple recurrence relations.

We shall prove the following

Theorem 1.1. The sequence of the polynomials $(a(n, i, l, z))_{n \ge 0}$ satisfies the homogeneous recurrence

$$\sum_{j \le \frac{i}{2}} (-1)^j \binom{i-j}{j} \frac{i}{i-j} a(n+i-2j,i,l,z) = \left(z + \frac{1}{z}\right) a(n,i,l,z)$$
(1.6)

with constant coefficients.

Before proving this theorem let us make some remarks.

For i=1 we get the recurrence $a(n+1,1,l,z)=\left(z+\frac{1}{z}\right)\cdot a(n,1,l,z)$. Since $a(0,1,l,z)=\left(0\atop \left\lfloor\frac{l-l}{2}\right\rfloor\right)z^{-l}+\left(0\atop \left\lfloor\frac{l-l+1}{2}\right\rfloor\right)z^{-l+1}=z^{-l}(1+z)$ we get (1.5).

For i = 2 the recurrence reduces to

$$a(n+2,2,l,z) = \frac{(z+1)^2}{z}a(n,2,l,z).$$

This is a recurrence of order 2. Therefore we need 2 initial values. These are $a(0,2,l,z)=z^{-\lfloor\frac{l}{2}\rfloor}, a(1,2,l,z)=(1+z)z^{-\lfloor\frac{l+1}{2}\rfloor}$. Hence (1.2) holds.

Everyone familiar with Fibonacci numbers recognizes the coefficients on the left hand side of (1.6). These occur in the Lucas polynomials $L_n(x, s)$ which are defined by

$$L_n(x,s) = xL_{n-1}(x,s) + sL_{n-2}(x,s), n > 2,$$
 (1.7)

with initial values $L_0(x, s) = 2$, $L_1(x, s) = x$.

They are explicitly given by $L_n(x,s) = \sum_{j < n} \binom{n-j}{j} \frac{n}{n-j} x^{n-2j} s^j$. From (1.7) we see by induction that

$$L_n(x, 1 - x) = 1 + (x - 1)^n$$
(1.8)

holds.

Consider now the vector space of all functions f on the nonnegative integers and define the translation operator E and the finite difference operator $\Delta = E - I$ as usual by Ef(n) = f(n+1) and $\Delta f(n) = f(n+1) - f(n)$. Then (1.8) implies

$$L_i(E, -\Delta)f(n) = f(n) + \Delta^i f(n). \tag{1.9}$$

For $f(n) = \binom{n}{r}$ this reduces to

$$\binom{n}{r} + \binom{n}{r-i} = L_i(E, -\Delta) \binom{n}{r} = \sum_{j < i} (-1)^j \binom{i-j}{j} \frac{i}{i-j} \binom{n+i-2j}{r-j}.$$
(1.10)

This holds for all values $r \in \mathbb{Z}$. As a special case we get

$$\left(\left\lfloor \frac{n+i(k+1)+l}{2}\right\rfloor\right) + \left(\left\lfloor \frac{n+i(k-1)+l}{2}\right\rfloor\right) =$$

$$= \sum_{j < i} (-1)^{j} {i-j \choose j} \frac{i}{i-j} \left(\left\lfloor \frac{n+i(k+1)-2j+l}{2}\right\rfloor\right) =$$

$$= \sum_{j < i} (-1)^{j} {i-j \choose j} \frac{i}{i-j} E^{i-2j} \left(\left\lfloor \frac{n+ik+l}{2}\right\rfloor\right).$$

If we multiply both sides by z^k and sum over all $k \in \mathbb{Z}$ we get (1.6). Thus our theorem is proved.

In order to give some impression of the operators

$$A_i(E) = \sum_{i < j} (-1)^j \binom{i-j}{j} \frac{i}{i-j} E^{i-2j} = L_i(E, -1)$$

we explicitly state the first ones:

$$A_1(E) = E$$

$$A_2(E) = E^2 - 2$$

$$A_3(E) = E^3 - 3E$$

$$A_4(E) = E^4 - 4E^2 + 2$$

$$A_5(E) = E^5 - 5E^3 + 5E$$

$$A_6(E) = E^6 - 6E^4 + 9E^2 - 2$$

For i = 5 and z = -1 the theorem tells us that sequence b(n, l) = a(n, 5, l, -1) satisfies the recurrence $(E^5 - 5E^3 + 5E + 2)$ b(n, l) = 0. From $E^5 - 5E^3 + 5E + 2 = (E + 2)(E^2 - E - 1)^2$ it is clear that the Fibonacci numbers satisfy the same recurrence.

Computing the initial values immediately gives $b(n, 0) = b(n, 1) = F_{n+1}$ and $b(n, 2) = F_n$, thus proving (0.1) and (0.2).

Remark:

If we only want to prove that the sequence of polynomials $(a(n,i,l,z))_{n\geq 0}$ satisfies a homogeneous linear recurrence with constant coefficients of order i, it suffices to show the following

Lemma 1.1. For each integer $n \ge 1$ there exist integers such that $1 + x^n = \sum a_{n,j}(x+1)^{n-2j}x^j$ holds.

For this implies that $1 + \Delta^n = \sum a_{n,j} E^{n-2j} \Delta^j$ and the argument continues as above.

In order to prove the lemma observe that for each j, $0 \le j \le \frac{n}{2}$, the polynomial $(x+1)^{n-2j}x^j$ is symmetric about $\frac{n}{2}$. If we eliminate the coefficients of x^j , $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$, in $(x+1)^n$ we get therefore $1+x^n$.

It turns out that for z = 1 and z = -1 there are simpler recurrences. We consider first the case z = -1.

First we notice that because of (1.4) we have a(n,i,l+i,-1)=-a(n,i,l,-1). Therefore we need only consider $l\in\{0,1,\ldots,i-1\}$. For small values of i we can find explicit values for these sums. Thus we have $a(n,1,l,-1)\equiv 0$ for all $l\in\mathbb{Z}$ and a(n,2,0,-1)=a(n,2,1,-1)=[n=0], where the symbol [P] equals 1 if the assertion P holds and it is 0 if P does not hold.

Further we have $a(n, 3, 0, -1) = a(n, 3, 1, -1) \equiv 1$ and $a(n, 3, 2, -1) \equiv 0$, $a(n, 4, 0, -1) = a(n, 4, 1, -1) = 2^{\lfloor \frac{n}{2} \rfloor}$, a(n, 4, 2, -1) = -a(n, 4, 3, -1) = 0 for even n, $a(n, 4, 2, -1) = -a(n, 4, 3, -1) = 2^{\lfloor \frac{n-1}{2} \rfloor}$ for n odd, and finally $a(n, 5, 0, -1) = a(n, 5, 1, -1) = F_{n+1}$, $a(n, 5, 2, -1) = -a(n, 5, 4, -1) = F_n$, and $a(n, 5, 3, -1) \equiv 0$.

It turns out that our results differ for even and odd values of i.

2. Sums of the Form
$$\sum_{k \in \mathbb{Z}} (-1)^k \binom{n}{\lfloor \frac{n+2ik+l}{2} \rfloor}$$

We first prove

Theorem 2.1. The sequences (a(n,2i,l,-1)) satisfy the homogeneous linear recurrence

$$\sum_{j \le i} (-1)^j \binom{i-j}{j} \frac{i}{i-j} E^{i-2j} a(n, 2i, l, -1) = 0$$
 (2.1)

Remark. If we denote the operator on the lefthand side by

$$B_{2i}(E) = \sum_{j < i} (-1)^j \binom{i-j}{j} \frac{i}{i-j} E^{i-2j} = L_i(E, -1), \text{ then}$$

 $B_{2i}(E) = A_i(E).$

The sequence (a(n, 2i, l, -1)) satisfies therefore both the recurrences

$$A_i(E)a(n,2i,l,-1) = 0$$
 and $(A_{2i}(E) + 2I)a(n,2i,l,-1) = 0$.

In order to understand this situation note that

$$L_{2i}(x,-1) + 2 = (L_i(x,-1))^2.$$

This follows immediately from the well-known formula (cf. e.g. [3])

$$L_n(x,s) = \left(\frac{x + \sqrt{x^2 + 4s}}{2}\right)^n + \left(\frac{x - \sqrt{x^2 + 4s}}{2}\right)^n.$$
 (2.2)

In order to prove (2.1) we observe that

$$(I + \Delta^{i}) \left(\left\lfloor \frac{r + 2ik + l}{2} \right\rfloor \right) = \left(\left\lfloor \frac{r + 2ik + l}{2} \right\rfloor \right) + \left(\left\lfloor \frac{r + 2i(k - 1) + l}{2} \right\rfloor \right).$$

This implies $(I + \Delta^i)a(n, 2i, l, -1) = 0$, because it turns out to be a telescoping sum.

Now we know that $1 + \Delta^i = \sum_{j} a_{i,j} E^{i-2j} \Delta^j$ for some coefficients $a_{i,j}$. If we apply $E^{i-2j} \Delta^j$ to $\binom{n}{\lfloor \frac{r+l+2ik}{2} \rfloor}$ we get

$$\left(\left\lfloor \frac{n+i-2j}{2} \right\rfloor \right).$$

Hence we get $\sum a_{i,j}a(n,2i,l-i,-1)=0$. Since this holds for each l, our theorem is proved.

3. Sums of the Form
$$\sum_{k\in\mathbb{Z}} (-1)^k \binom{n}{\lfloor \frac{n+(2i-1)k+l}{2} \rfloor}$$

In order to study a(n, 2i - 1, l, -1) we observe that

$$a(n,2i-1,i+l,-1) = -a(n,2i-1,i-l,-1).$$
 (3.1)

Since $n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor$ we have

$$n - \left| \frac{n + (2i - 1)k - l + i}{2} \right| = \left| \frac{n - (2i - 1)(k + 1) - i + l}{2} \right|.$$

This means that the term with index k in a(n, 2i - 1, i - l, -1) is the opposite of the term with index -(k + 1) in a(n, 2i - 1, i + l, -1).

As special cases we get

$$a(n,2i-1,i,-1) = 0 (3.2)$$

and

$$a(n,2i-1,1,-1) = -a(n,2i-1,2i,-1) = a(n,2i-1,0,-1)$$
(3.3)

Therefore we get

$$\sum_{j=1}^{2i-1} a(n, 2i - 1, j, -1) = 0.$$
 (3.4)

But we also have

$$\sum_{i=1}^{i-1} a(n, 2i - 1, 2j, -1) = 0, \tag{3.5}$$

because

$$a(n, 2i - 1, 2i - 2j, -1) = a(n, 2i - 1, i + (i - 2j), -1) =$$

= $-a(n, 2i - 1, i - (i - 2j), -1) = -a(n, 2i - 1, 2j, -1).$

Thus also

$$\sum_{j=1}^{i} a(n,2i-1,2j-1,-1) = -\sum_{j=1}^{i} a(n,2i-1,2j-1+2i-1,-1) = 0$$

which implies $\sum_{j=1}^{2i-1} a(n, 2i-1, 2j, -1) = 0$. As a consequence we get that the sum over 2i-1 consecutive values of the form a(n, 2i - 1, l - 2j, -1) vanishes and therefore we have

$$\sum_{i=-i+1}^{i-1} a(n, 2i-1, l-2j, -1) = 0$$
(3.6)

for each $l \in \mathbb{Z}$.

This is equivalent with

$$\sum_{j=0}^{i-1} a(n, 2i - 1, l - 2j, -1) - \sum_{j=1}^{i-1} a(n, 2i - 1, l + 1 - 2j, -1) = 0$$
(3.7)

Each term in a(n, 2i-1, l, -1) has the form $f(n, r, k, l) = (-1)^k$ $\binom{n}{\lfloor \frac{r+l+(2i-1)k}{2} \rfloor}$ with r=n and a(n,2i-1,l,-1) is a finite sum of expressions f(n, n, k, l) - f(n, n, k + 1, l).

Given r and l we may choose one of two consecutive k's such that r + l + (2i - 1)k is even.

Then we have

$$f(n,r,k,l-2j) - f(n,r,k+1,l-2j) =$$

$$= \Delta^{j}(f(n,r,k,l) - f(n,r,k+1,l))$$
(3.8)

If we set

$$b(n,i,l,r) = \sum_{k \in \mathbb{Z}} (-1)^k \binom{n}{\left|\frac{r+ik+l}{2}\right|},$$

then we have

$$0 = \sum_{j=-i+1}^{i-1} a(n, 2i - 1, l - 2j, -1) =$$

$$= (1 + \Delta + \dots + \Delta^{i-1})b(n, 2i - 1, l, r)_{r=n} -$$

$$- \Delta(1 + \Delta + \dots + \Delta^{i-2})b(n, 2i - 1, l + 1, r)_{r=n}$$

If we define the Filbonacci polynomials $F_n(x,s)$ by the recurrence $F_n(x,s) = xF_{n-1}(x,s) + sF_{n-2}(x,s)$ with the initial values $F_0(x,s) = 0$ and $F_1(x,s) = 1$ then we have

$$F_n(x,s) = \sum_{j < \frac{n-1}{2}} {n-1-j \choose j} x^{n-1-j} s^j.$$

It is immediately verified that

$$F_n(x, 1-x) = 1 + (x-1) + \dots + (x-1)^{n-1}$$

holds.

Therefore (3.7) may be formulated as

$$(F_i(E, -\Delta)b(n, 2i - 1, l, r) - \Delta F_{i-1}(E, -\Delta) \cdot b(n, 2i - 1, l + 1, r))_{r-r} = 0$$
(3.9)

Now we have

$$E^{-2j}\Delta^{j}\left(\left\lfloor\frac{r+l+(2i-1)k}{2}\right\rfloor\right)_{r=n}^{=}$$

$$=\left(\left\lfloor\frac{n-2j+l+(2i-1)k}{2}\right\rfloor\right) =$$

$$=E^{-2j}\left(\left\lfloor\frac{n+l+(2i-1)k}{2}\right\rfloor\right)$$
(3.10)

and

$$E^{-2j-1}\Delta^{j+1} \begin{pmatrix} n \\ \left\lfloor \frac{r+l+1+(2i-1)k}{2} \right\rfloor \end{pmatrix}_{r=n} = \\ = \begin{pmatrix} n-2j-1 \\ \left\lfloor \frac{n-2j-1+l+(2i-1)k}{2} \right\rfloor \end{pmatrix} = \\ = E^{-2j-1} \begin{pmatrix} n \\ \left\lfloor \frac{n+l+(2i-1)k}{2} \right\rfloor \end{pmatrix}$$
(3.11)

Therefore (3.9) is equivalent with

$$(F_i(E,-1) - F_{i-1}(E,-1))a(n,2i-1,l,-1)) = 0.$$

This implies

Theorem 3.1. The sequences (a(n, 2i - 1, l, -1)) satisfy the homogeneous linear recurrence

$$(F_i(E,-1) - F_{i-1}(E,-1))a(n,2i-1,l,-1)) = 0 (3.12)$$

The operators $C_i(E) = F_i(E, -1) - F_{i-1}(E, -1)$ are for small values i explicitly given by

$$C_1(E) = 1$$

$$C_2(E) = E - 1$$

$$C_3(E) = E^2 - E - 1$$

$$C_4(E) = E^3 - E^2 - 2E + 1$$

$$C_5(E) = E^4 - E^3 - 3E^2 + 2E - 1$$

As an example consider i = 3. We get

$$a(n+2,5,l,-1) - a(n+1,5,l,-1) - a(n,5,l,-1) = 0.$$

Thus a(n, 5, l, -1) satisfies the recurrence of the Fibonacci numbers. By choosing the appropriate initial values we get again formulas (0.1) and (0.2).

To understand the relation between Theorem 1 and Theorem 3 we note that

$$(F_n(x,-1) - F_{n-1}(x,-1))^2(x+2) = L_{2n-1}(x,-1) + 2$$

holds. This follows from the well-known formula (cf. [3])

$$F_n(x,s) = \frac{1}{\sqrt{x^2 + 4s}} \left(\left(\frac{x + \sqrt{x^2 + 4s}}{2} \right)^n - \left(\frac{x - \sqrt{x^2 + 4s}}{2} \right)^n \right)$$
(3.13)

in connection with (2.2).

4. Sums of the Form
$$\sum_{k\in\mathbb{Z}} \binom{n}{\lfloor \frac{n+2ik+l}{2} \rfloor}$$

Simpler recurrences than in the general case are also possible for z=1. We must again distinguish between even and odd i.

Let us first consider the sums a(n, 2i, l, 1). Here we have

$$(\Delta^i - 1) \sum \binom{n}{r + ik} = 0.$$

We know already that $F_n(x, 1-x) = 1 + (x-1) + \cdots + (x-1)^{n-1}$ holds and therefore we may write

$$\Delta^{i} - 1 = (E - 2)F_{i}(E, -\Delta).$$

For $n + l \equiv 1 \pmod{2}$ we have

$$E^{-2j} \binom{n}{\left\lfloor \frac{n+2ik+l}{2} \right\rfloor} = E^{-2j} \Delta^j \binom{n}{r}_{r=\left\lfloor \frac{n+2ik+l}{2} \right\rfloor}$$

and

$$E^{-2j-1} \left(\left| \frac{n}{r+2ik+l} \right| \right) = E^{-2j-1} \Delta^j \binom{n}{r}_{r=\left\lfloor \frac{n+2ik+l}{2} \right\rfloor}.$$

If $n + l \equiv 0 \pmod{2}$ we have

$$\left(\left\lfloor \frac{n}{n+2ik+l} \right\rfloor \right) = \left(\left\lfloor \frac{n}{n+2ik-l+1} \right\rfloor \right).$$

Thus in each case we get

$$(E-2)F_i(E,-1)a(n,2i,l,1) = 0.$$

This gives

Theorem 4.1. The sequences (a(n, 2i, l, 1)) satisfy the homogeneous linear recurrence

$$(E-2)F_i(E,-1)a(n,2i,l,1) = 0 (4.1)$$

These operators are for small values of i given by

$$D_1(E) = E - 2$$

$$D_2(E) = E^2 - 2E$$

$$D_3(E) = E^3 - 2E^2 - E - 2$$

$$D_4(E) = E^4 - 2E^3 - 2E^2 + 4E$$

Again this is connected to the formula

$$L_{2i}(x,-1) - 2 = (x^2 - 4)(F_i(x,-1))^2$$

5. Sums of the Form
$$\sum_{k \in \mathbb{Z}} \binom{n}{\lfloor \frac{n+(2i-1)k+l}{2} \rfloor}$$

Now remains the case a(n, 2i - 1, l, 1). Our aim is the following theorem.

Theorem 5.1. The sequences (a(n, 2i - 1, l, 1)) satisfy the homogeneous linear recurrence

$$(L_i(E,-1)-L_{i-1}(E,-1))a(n,2i-1,l,1)=0.$$

In order to prove this observe that

$$a(n, 2i - 1, l, 1) = a(n, 2i - 1, l + 2i - 1, 1)$$

and therefore

$$a(n,2i-1,l,1) + a(n,2i-1,l-2i,1) =$$

$$= (a,n,2i-1,l-1,1) + a(n,2i-1,l+1-2i,1)$$
 (5.1)

The same reasoning as in (3.8) gives

$$(1 + \Delta^{i})a(n, 2i - 1, l, 1) = \Delta(1 + \Delta^{i-1})a(n, 2i - 1, l + 1, 1).$$
 (5.2)

From (3.10) and (3.11) and (1.9) we see that (5.2) means

$$(L_i(E,-1)-L_{i-1}(E,-1))a(n,2i-1,l,1)=0.$$

Thus our theorem is proved.

We note again the corresponding formula for the Lucas polynomials

$$(x-2)(L_{2n-1}(x,-1)-2) = (L_n(x,-1)-L_{n-1}(x,-1))^2.$$

6. Sums of the Form
$$\sum_{k\in\mathbb{Z}} {n \choose \left\lfloor \frac{n+ik+l}{3} \right\rfloor} z^k$$

We first prove the

Lemma 6.1. For each integer $n \ge 1$ there exist integers such that

$$1 + (-1)^{n-1}x^n = \sum a_{n,j}(x+1)^{n-3j}x^j + \sum b_{n,j}(x+1)^{2n-3j}x^j \quad (6.1)$$

holds.

Let us make some comments. We are looking for a term of the form $1 + a(n)x^n$ which occurs on the right hand side, i.e. which is a linear combination of the polynomials $(x+1)^{n-3j}x^j$, $0 \le j \le \frac{n}{3}$ and

 $(x+1)^{2n-3j}x^j$, $\frac{n}{2} \le j \le \frac{2n}{3}$. The only polynomial of this form which contains 1 is $(x+1)^n$. For odd n this is also the only one containing x^n . Thus a(n) must be 1 in this case.

If n = 2m there is another polynomial of this form which contains x^n , namely $(x+1)^m x^m = (x+1)^{4m-3m} x^m$. In order to obtain a linear combination of the form $1 + a(n)x^n$ we must find b such that the coefficient of x^{n-1} in $(x+1)^{2m} + b((x+1)^m x^m)$ equals 0. Thus b = -2 and the coefficient of x^n must therefore be -1.

Proof of Lemma 6.1:

To prove this define polynomials

$$v_n(x,s) = xv_{n-1}(x,s) - sv_{n-3}(x,s)$$
(6.2)

with initial values

$$v_0(x,s) = 3, v_1(x,s) = x, v_2(x,s) = x^2$$
 (6.3)

Then $v_n(x,s) = \sum_{3i \le n} a_{n,i} x^{n-3j} s^j$ for some coefficients $a_{n,i}$.

This is easily proved by induction.

It is not difficult to determine these polynomials explicitly: For n > 0 we have

$$v_n(x,s) = \sum_{3j \le n} (-1)^j \binom{n-2j}{j} \frac{n}{n-2j} x^{n-3j} s^j.$$
 (6.4)

For the recurrence is easily verified and the initial values coincide for n = 1, 2, 3.

Consider now

$$v_n(x+1,x) = \sum_{3j \le n} a_{n,j}(x+1)^{n-3j} x^j.$$

These polynomials satisfy the recurrence

$$v_n(x+1,x) = (x+1)v_{n-1}(x+1,x) - xv_{n-3}(x+1,x).$$

The characteristic polynomial of this recurrence is $\lambda^3 - (x+1)\lambda^2 + x$ with $\lambda = 1$ as one root. Dividing this polynomial by $\lambda - 1$ we get $\lambda^2 - x\lambda - x$.

Now we know that the Lucas polynomials

$$L_n(x,x) = \sum_{i} {n-j \choose j} \frac{n}{n-j} x^{n-j} = \sum_{i} {i \choose n-i} \frac{n}{i} x^i$$

satisfy the recurrence $L_n(x,x) = xL_{n-1}(x,x) + xL_{n-2}(x,x)$. Therefore they also satisfy $L_n(x,x) = (x+1)L_{n-1}(x,x) - xL_{n-3}(x,x)$.

The initial values are $L_0(x,x) = 2$, $L_1(x,x) = x$.

Since the constant polynomials also satisfy this recurrence we see that $v_n(x+1,x) = L_n(x,x) + 1$.

Next we define polynomials

$$w_n(x,s) = xsw_{n-2}(x,s) + s^2w_{n-3}(x,s)$$
(6.5)

with initial values

$$w_0(x,s) = 3, \quad w_1(x,s) = 0, \quad w_2(x,s) = 2xs$$
 (6.6)

Then $w_n(x, s) = \sum_{3j \le 2n} b_{n,j} x^{2n-3j} s^j$ for some coefficients $b_{n,j}$. This may be proved by induction.

For n > 0 these polynomials are explicitly given by

$$w_n(x,s) = \sum_{3i < 2n} {n-j \choose 2n-3j} \frac{n}{n-j} x^{2n-3j} s^j.$$
 (6.7)

This is again easily verified.

Consider now

$$w_n(x+1,x) = \sum_{3j \le 2n} b_{n,j}(x+1)^{2n-3j} x^j.$$

These polynomials satisfy the recurrence

$$w_n(x+1,x) = x(x+1)w_{n-2}(x+1,x) + x^2w_{n-3}(x+1,x).$$

The characteristic polynomial of this recurrence is $\lambda^3 - x(x+1)\lambda - x^2$ with $\lambda = -x$ as one root. Dividing this polynomial by $\lambda + x$ we get again $\lambda^2 - x\lambda - x$.

Thus $w_n(x + 1, x) = L_n(x, x) + a(-x)^n$.

Comparing the initial values we see that a = 1.

Therefore we get

$$v_n(x+1,x) - w_n(x+1,x) = 1 - (-x)^n.$$

Thus our lemma is proved.

Therefore we also have

$$v_i(E, \Delta) - w_i(E, \Delta) = 1 + (-1)^{i-1} \Delta^i$$
 (6.8)

for all i.

If we apply this to $\binom{n}{r}$ we get

$$\binom{n}{r} + (-1)^{i-1} \binom{n}{r-i} = \sum a_{i,j} \binom{n+i-3j}{r-j} + \sum b_{i,j} \binom{n+2i-3j}{r-j}$$

Now let $r = \lfloor \frac{n+i(k+1)}{3} \rfloor$. Then we have

$$\left(\left\lfloor \frac{n+i(k+1)}{3} \right\rfloor\right) + (-1)^{i-1} \left(\left\lfloor \frac{n+i(k-2)}{3} \right\rfloor\right) =$$

$$= \sum a_{i,j} \left(\left\lfloor \frac{n+i-3j}{3} \right\rfloor\right) +$$

$$+ \sum b_{i,j} \left(\left\lfloor \frac{n-3j+i(k+1)}{3} \right\rfloor\right)$$

Multiplying this identity by z^k and summing over all k we obtain **Theorem 6.1.** The sequence

$$a(n,i,l,3,z) := \sum_{k \in \mathbb{Z}} \left(\left| \frac{n}{n+ik+l} \right| \right) z^k$$

satisfies the recursion

$$(v_i(E,1) + zw_i(E,1))b(n,i,l,3,z) = \left(\frac{1}{z} + z^2\right)a(n,i,l,3,z) \quad (6.9)$$

7. Sums of the Form
$$\sum_{k \in \mathbb{Z}} {n \choose \left|\frac{n+ik+l}{m}\right|} z^k$$

Now we want to prove a general result on sums of the form

$$a(n, i, l, m, z) = \sum_{k \in \mathbb{Z}} \left(\left| \frac{n}{m+ik+l} \right| \right) z^k.$$

We need the following

Lemma 7.1. For each pair of integers $n \ge 1$, $m \ge 1$ there exist uniquely determined integers $a_{n,m,j}$ such that

$$(1+x)^n + \sum_{k=1}^{m-1} \sum_{j=\lceil \frac{(k-1)n}{m-1} \rceil}^{\frac{kn}{m}} a_{n,m,j} (x+1)^{kn-mj} x^j = 1$$

or equivalently

$$(1+x)^n + \sum_{j=1}^n a_{n,m,j} (x+1)^{(-mj)(\text{mod } n)} x^j = 1, \tag{7.1}$$

where x(mod n) denotes the least nonnegative representative of the residue class modulo n and $a_{n,m,j} = 0$ if (-mj)(mod n) + j > n.

There is a useful reformulation which has been inspired by a remark of G. Kowol (private communication): If (7.1) is true and we replace x+1 by ζ_n , a primitive root of unity of order n, then we get $\sum_{j=1}^n a_{n,m,j} \zeta_n^{-mj} (\zeta_n-1)^j = 0. \text{ Thus } \zeta_n^{-m} (\zeta_n-1) \text{ is a root of the polynomial } \sum_{j=1}^n a_{n,m,j} x^j. \text{ The most obvious polynomial having } \zeta_n^{-m} (\zeta_n-1) \text{ as a root is } \sum_{j=1}^n b_{n,m,j} x^j = \prod_{k=1}^n (x-\zeta_n^{-mk}(\zeta_n^k-1)). \text{ If } b_{n,m,j} = 0 \text{ for all } j \text{ with } (-mj) (\text{mod } n) + j > n \text{ then the polynomials}$

$$\sum_{i=1}^{n} b_{n,m,j} (x+1)^{(-mj)(\bmod n)} x^{j}$$

and $(1+x)^n-1$ both have degree n and the roots 0 and $\lambda_k=\zeta_n^k-1$, $1\leq k\leq n-1$. Therefore they are proportional. Now we have

$$b_{n,m,1} = (-1)^{n-1} \prod_{k=1}^{n-1} \zeta_n^{-mk} (\zeta_n^k - 1) = \zeta_n^{-m \binom{n}{2}} \prod_{k=1}^{n-1} (1 - \zeta_n^k) =$$

$$= (-1)^{m(n-1)} \prod_{k=1}^{n-1} (1 - \zeta_n^k)$$

From $\prod_{k=1}^{n-1}(x-\zeta_n^k)=\frac{x^n-1}{x-1}$ we get $\prod_{k=1}^{n-1}(1-\zeta_n^k)=n$ and thus we have

$$b_{n,m,1} = (-1)^{m(n-1)} n.$$

Thus we get

$$(1+x)^n - (-1)^{m(n-1)} \sum_{1 \le j \le n} b_{n,m,j} (x+1)^{(-mj)(\text{mod } n)} x^j = 1$$
 (7.2)

and Lemma 7.1 is proved.

Therefore our assertion is reduced to

Lemma 7.2. Let $m, n \in \mathbb{Z}$, n > 0 and let ζ_n be a primitive root of unity of order n. If we set

$$\sum_{j=1}^{n} b_{n,m,j} x^{j} = \prod_{k=1}^{n} (x - \zeta_{n}^{-mk} (\zeta_{n}^{k} - 1)), \tag{7.3}$$

then $b_{n,m,j} = 0$ for all j satisfying $\left\{\frac{-mj}{n}\right\} + \frac{j}{n} > 1$ where $\{x\}$ denotes $\{x\} = x - |x|$.

The following proof is due to Prof. Andrzej Schinzel [4]. Let s_i be the j'th elementary symmetric function of

$$\zeta_n^{-mk}(\zeta_n^k - 1), \quad 1 \le k \le n,$$

and p_j the j'th powersum of those numbers.

Lemma 7.3. If $\{\frac{mj}{n}\} > \frac{j}{n}$, then $p_j = 0, 1 \le j < n$.

Proof: We have

$$p_{j} = \sum_{i=0}^{j} (-1)^{j-i} {j \choose i} \sum_{k=1}^{n} \zeta_{n}^{k(i-mj)}$$
 (7.4)

since

$$p_{j} = \sum_{k=1}^{n} \zeta_{n}^{-mkj} (\zeta_{n}^{k} - 1)^{j} = \sum_{k=1}^{n} \zeta_{n}^{-mkj} \sum_{i=0}^{j} (-1)^{j-i} {j \choose i} \zeta_{n}^{ki} =$$

$$= \sum_{i=0}^{j} (-1)^{j-i} {j \choose i} \sum_{k=1}^{n} \zeta_{n}^{k(i-mj)}.$$

The inner sum is different from 0 only if $i - mj \equiv 0 \pmod{n}$. But since $i \leq j$ this implies $\left\{\frac{mj}{n}\right\} \leq \frac{j}{n}$, contrary to the assumption.

Proof of Lemma 7.2:

We shall prove by induction on $j \le n$ that

either
$$\left\{\frac{mj}{n}\right\} \leq \frac{j}{n}$$
 or $s_j = 0$.

This is true for j = 0.

Assume now that it is true for all i < j and that $\left\{\frac{mj}{n}\right\} > \frac{j}{n}$. Then by Lemma 7.3 $p_j = 0$.

Newton's formula gives

$$\sum_{i=0}^{j-1} (-1)^i p_{j-i} s_i + (-1)^j j s_j = 0.$$
 (7.5)

Since $\left\{ \frac{mj}{n} \right\} > \frac{j}{n}$ we have for each i < j either $\left\{ \frac{mi}{n} \right\} > \frac{i}{n}$ or $\left\{ \frac{m(j-i)}{n} \right\} > \frac{j-i}{n}$.

This implies by the inductive assumption either $s_i = 0$ or by the

Lemma 7.3 $p_{j-i} = 0$. Thus $\sum_{i=0}^{j-1} (-1)^i p_{j-i} s_i = 0$ and by Newton's formula $s_j = 0$.

The inductive proof is complete.
Now if
$$\left\{\frac{-mj}{n}\right\} + \frac{j}{n} > 1$$
 then $\left\{\frac{m(n-j)}{n}\right\} > \frac{n-j}{n}$.

Hence
$$s_{n-j} = 0$$
 and $b_{n,m,j} = (-1)^{n-j} s_{n-j} = 0$.

Remark:

G. Kowol pointed out to me that for gcd(m, n) = 1 formula (7.1) may be written in the following form

$$(1+x)^n + \sum_{i=1}^{n-1} a_{n,m,i}(x+1)^k x^{-m^{-1}k \pmod{n}} = 1 + (-1)^{m(n-1)} x^n,$$

if we put $k = -mj \pmod{n}$.

Changing x into -1 - x we get

$$(-x)^{n} + \sum_{j=1}^{n-1} a_{n,m,j} (-1)^{k-m^{-1}k \pmod{n}} x^{k} (1+x)^{-m^{-1}k \pmod{n}} =$$

$$= 1 + (-1)^{m(n-1)+n} (1+x)^{n}$$

This gives the corresponding formula for $m^{-1} \pmod{n}$.

More precisely we have in this case

$$a_{n,m^{-1}(\text{mod }n),k} = (-1)^{j+(-mj)(\text{mod }n)} a_{n,m,j},$$

with $k = -mj \pmod{n}$.

For example we have $(a_{7,2,j})_{j=1}^6 = (-7, 14, -7, 0, 0, 0)$. Now $2^{-1} \pmod{7} = 4$ and therefore we get $(a_{7,4,j})_{j=1}^6 = (-7, 0, -14, -7, 0, 0, 0)$ 0, -7, 0).

With the same notation as in Lemma 7.2 we can now prove

Lemma 7.4. For all $n, i, r \in \mathbb{Z}$ we have the identity

$$\binom{n+i}{r} - (-1)^{m(i-1)} \sum_{j=1}^{i} b_{i,m,j} \binom{n + (-mj)(\bmod{i})}{r - j} = \binom{n}{r}$$

or

$$\binom{n+i}{r} - (-1)^{m(i-1)} \sum_{j=1}^{i-1} b_{i,m,j} \binom{n + (-mj)(\text{mod } i)}{r - j} =$$

$$= \binom{n}{r} + (-1)^{m(i-1)} \binom{n}{r - i}$$

Proof: This may be derived by multiplying (7.2) by a power of 1 + x and comparing coefficients or by considering the operator identity

$$E^{i} - (-1)^{m(i-1)} \sum_{1 \le j \le i} b_{i,m,j} E^{(-mj)(\bmod i)} \Delta^{j} = 1,$$

which follows from (7.2) by the homomorphism $x \to \Delta$ and applying it to $\binom{n}{r}$.

Now let $r = \lfloor \frac{n+i(k+1)}{m} \rfloor$. Then we have

$$\begin{pmatrix} n \\ \lfloor \frac{n+i(k+1)}{m} \rfloor \end{pmatrix} + (-1)^{m(i-1)} \begin{pmatrix} n \\ \lfloor \frac{n+i(k-m+1)}{m} \rfloor \end{pmatrix} = \\
= \begin{pmatrix} n+i \\ \lfloor \frac{n+i(k+1)}{m} \rfloor \end{pmatrix} - (-1)^{m(i-1)}. \\
\cdot \sum_{j=1}^{i-1} b_{i,m,j} \begin{pmatrix} n+(-mj) \pmod{i} \\ \lfloor \frac{n+i(k+1)}{m} \rfloor - j \end{pmatrix}$$

Multiplying this identity by z^k and summing over all k we see that the sequence $a(n, i, l, m, z) = \sum_{k \in \mathbb{Z}} \binom{n}{\lfloor \frac{n+ik+l}{m} \rfloor} z^k$ satisfies the recursion

$$\begin{split} \sum_{k \in \mathbb{Z}} \left(\left\lfloor \frac{n + l + i(k+1)}{m} \right\rfloor \right) z^k + (-1)^{m(i-1)} \cdot \\ \cdot \sum_{k \in \mathbb{Z}} \left(\left\lfloor \frac{n + l + i(k-m+1)}{m} \right\rfloor \right) z^k = \end{split}$$

$$= \sum_{k \in \mathbb{Z}} \left(\frac{n+i}{\lfloor \frac{n+l+i(k+1)}{m} \rfloor} \right) z^k -$$

$$- (-1)^{m(i-1)} \sum_{j=1}^{i-1} b_{i,m,j} \sum_{k \in \mathbb{Z}} \left(\frac{n+(-mj)(\bmod i)}{\lfloor \frac{n+l+i(k+1)-jm}{m} \rfloor} \right) z^k$$

This gives

Theorem 7.1. Define h(j) by h(j)i = mj + (-mj) mod i - i. The sequence

$$a(n,i,l,m,z) = \sum_{k \in \mathbb{Z}} \left(\left| \frac{n}{m+ik+l} \right| \right) z^{k}$$

satisfies the recursion

$$(E^{i} - (-1)^{m(i-1)} \sum_{j=1}^{i-1} b_{i,m,j} z^{h(j)} E^{(-mj) \bmod i} - \frac{1}{z} - (-1)^{m(i-1)} z^{m-1}) a(n,i,l,m,z) = 0.$$

As an example consider $a(n, 8, 0, 6, z) = \sum_{k \in \mathbb{Z}} \binom{n}{\lfloor \frac{n+8k}{6} \rfloor} z^k$. In this case we have

$$1 + x^8 = (1+x)^8 - 8x(1+x)^2 - 12x^2(1+x)^4 + 2x^4 - 8x^5(1+x)^2$$

and therefore we get the recurrence

$$\left(E^8 - 8E^2 - 12zE^4 + 2z^2 - 8z^3E^2 - \frac{1}{z} - z^5\right)a(n, 8, 0, 6, z) = 0.$$

8. Concluding Remarks

We have seen that there are integers $a_{n,m,j}$ such that

$$(1+x)^n + \sum_{i=1}^n a_{n,m,j}(x+1)^{(-mj)(\text{mod } n)} x^j = 1$$

holds.

For m = 1, 2, 3 we know the explicit values of the coefficients $a_{n,m,j}$. Professor Schinzel has informed me that for n odd and $m = \frac{n+1}{2}$ explicit values may be obtained from formula (8) in [2]. There it

is shown that
$$(x+1)^{2n+1} - 1 = \sum_{j=0}^{n} s_j x^{2j+1} (x+1)^{n-j}$$
 where $\sum_{j=0}^{n} s_j z^j = \prod_{j=1}^{n} \left(z + 2\left(1 - \cos\frac{2\pi j}{2n+1}\right)\right)$ and $s_j = \frac{2n+1}{n+j+1} \binom{n+j+1}{2j+1}$. Here we have $m = n+1$ since

$$n - j \equiv -(n+1)(2j+1) \mod (2n+1).$$

This is a special case of our results because we have

$$\sum_{j=0}^{n} s_{j} z^{2j} = \prod_{k=1}^{2n} (z + \zeta^{-(n+1)k} (1 - \zeta^{k})) =$$

$$= \prod_{j=1}^{2n} (z + \zeta^{nk} - \zeta^{-nk}) = \prod_{j=1}^{n} (z + \zeta^{nk} - \zeta^{-nk}) \prod_{j=1}^{n} (z - (\zeta^{nk} - \zeta^{-nk})) =$$

$$= \prod_{k=1}^{n} (z^{2} - (\zeta^{nk} - \zeta^{-nk})^{2}) = \prod_{k=1}^{n} \left(z^{2} - 2\cos\frac{2\pi nk}{2n+1} + 2\right).$$

From $-nk \equiv (n+1)k \pmod{2n+1}$ we see that this also equals $\prod_{k=1}^{n} \left(z^2 - 2\cos\frac{2\pi k}{2n+1} + 2\right).$

In the general case we have only some special explicit results.

First we show that Newton's formula gives a recursion for the coefficients $b_{n,m,j}$.

Lemma 8.1. Let $d_{n,m,j} = (-1)^{j-(mj)(\text{mod }n)} n \binom{j}{(mj)(\text{mod }n)}$. For j < n we have

$$b_{n,m,n-j} = -\frac{1}{j} \sum_{i=0}^{j-1} b_{n,m,n-i} d_{n,m,j-i}$$
(8.1)

with initial value $b_{n,m,n} = 1$.

Proof: (7.4) gives $p_j = d_{n,m,j}$, j < n.

Finally we want to show how the formulas (6.4) and (6.7) for m = 3 can be generalized to arbitrary m to give explicit values for some coefficients.

To do this it is convenient to define $0 \pmod{n} = n$ and $a_{n,m,0} = 1$.

Lemma 8.2.
$$a_{n,m,j} = (-1)^j \binom{n - (m-1)j}{j} \frac{n}{n - (m-1)j}$$
 for $0 \le j \le \frac{n}{m}$.

Proof:

It suffices to show that in

$$\sum_{j=0}^{\frac{n}{m}} (-1)^{j} \binom{n-(m-1)j}{j} \frac{n}{n-(m-1)j} (x+1)^{n-mj} x^{j}$$

all coefficients of x^j up to $j = \left| \frac{n}{m} \right|$ vanish.

The coefficient of x^r in this sum is given by

$$\sum_{j=0}^{r} (-1)^{j} \binom{n - (m-1)j}{j} \frac{n}{n - (m-1)j} \binom{n - mj}{r - j}$$

for all r such that $r \leq \left| \frac{n}{m} \right|$.

$$\sum_{j=0}^{r} (-1)^{j} \binom{n - (m-1)j}{j} \frac{n}{n - (m-1)j} \binom{n - mj}{r - j} =$$

$$= \frac{n}{r!} \sum_{j=0}^{r} (-1)^{j} \binom{r}{j} (n - (m-1)j - 1) \cdots (n - (m-1)j - r + 1) =$$

$$= \Delta^{r} p(j) = 0$$

for some polynomial with deg p(x) < r and the lemma is proven.

Remark. It is easily verified that for n > 0

$$v(n, m, x, s) = \sum_{i=0}^{\frac{n}{m}} (-1)^{i} \binom{n - (m-1)j}{j} \frac{n}{n - (m-1)j} (x+1)^{n-mj} x^{j}$$

coincides with the sequence defined by the recurrence

$$v(n+m, m, x, s) = xv(n+m-1, m, x, s) + sv(n, m, x, s)$$

with initial values v(0, m, x, s) = m, $v(i, m, x, s) = x^i$, 0 < i < m.

Lemma 8.3. Let $w(n, m, x, s) = (-1)^m t(n, m, x, (-1)^{m-1} s)$ with

$$t(n,m,x,s) = \sum {n-j \choose (m-1)n-mj} \frac{n}{n-j} x^{(m-1)n-mj} s^{j}.$$

Then $\sum_{j \ge \frac{(m-2)n}{m-1}} a_{n,m,j} x^{(-mj) \mod n} s^j = w(n,m,x,s)$ for m > 2.

Proof: We know already that $a_{n,m,j} \neq 0$ for these values of j only if

$$\frac{(m-2)n}{m-1} \le j \le \frac{(m-1)n}{m} \text{ or } \frac{n}{m} \le n-j \le \frac{n}{m-1}.$$

Let k = n - j.

For m > 2 it is evident that if $0 < k_1 + k_2 \le \frac{n}{m-1}$ for positive numbers k_i there is at most one $k_i \ge \frac{n}{m}$. For $k < \frac{n}{m}$ we have $\left\{\frac{km}{n}\right\} = \frac{km}{n} > \frac{k}{n}$ and therefore $p_k = 0$ by Lemma 7.3. Thus $\sum_{i=1}^{k-1} b_{n,m,n-i} p_{k-i} = 0$ for each $k < \left\lfloor \frac{n}{m-1} \right\rfloor$.

Newton's formula now tells us that $p_k = -kb_{n,m,n-k}$.

By Lemma 7.3 we have
$$p_k = (-1)^{k-mk+n} \binom{k}{mk-n}$$
. This implies

$$b_{n,m,j} = (-1)^{(m-1)(n-j)+n+1} \binom{n-j}{(m-1)n-mj} \frac{n}{n-j}$$
 as asserted.

Remark:

It is easy to verify that t(n, m, x, s) may be characterized for n > 0 by the recursion

$$t(n, m, x, s) = xs^{m-2}t(n - m + 1, m, x, s) + s^{m-1}t(n - m, m, x, s)$$

with the initial values

$$t(0, m, x, s) = m, t(1, m, x, s) = \cdots t(m - 2, m, x, s) = 0,$$

$$t(m - 1, m, x, s) = (m - 1)s^{m-2}$$

References

- [1] Andrews, G. E.: Some formulae for the Fibonacci sequence with generalization. Fibonacci Q. 7, 113–130 (1969).
- [2] Browkin, J., Brzezinski, J.: Some remarks on the abc-conjecture. Math. Comp. 62, 931–939 (1994).
- [3] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete mathematics. Addison-Wesley, Reading 1988.
- [4] Schinzel, A.: Letter from July 2, 2001.
- [5] Schur, I.: Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche. In: I. Schur, Gesammelte Abhandlungen, Vol. 2, pp. 117–136. Springer, Berlin 1973.

Author's address: Prof. Dr. J. Cigler, Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien.