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Abstract

We prove that the sequences

a(n,i,l,m,z) :Z < VH_ZC—HJ )Zk € Qz,z7 ']

keZ m

satisfy a linear recurrence of order i with constant coefficients and show how these
coefficients can be computed.
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0. Introduction

Our starting point are the following remarkable identities for the
Fibonacci numbers F,, (cf. [1] and [5]):

n

n=> (=1 {n+5k+2J (0.1)

kez 2
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and

Fo = Z(_nk( stch) (0.2)

kez 2

The purpose of this paper is to put these identities into a general
context in order to give an ‘“‘explanation” of these formulas. We

prove that the sequences a(n,i,l,m,z) =, (L’”ﬁ o )zk satisfy a

linear recurrence of order i with constant coefficients and show how
these coefficients can be computed. Some special cases have
previously been obtained by G. E. Andrews [1] with other methods.
I want to thank G. Kowol for some useful hints and Professor Andrzej
Schinzel for providing a proof of Lemma 7.2.

1. Sums of the Form >, _, < i )Zk

Ln+;k+lJ

We study first the polynomials

n
a(n,i,l,z)Za(n,i,l,Z,Z)ZZ({n—kik—i—l )zkEQ[z,z_l],
ez \ |7
-

(1.1)

where i > 1 and [ are integers.
It is easy to see that

n

a(n,2,1,z) = (1 + Z)nz_LTHJ (1.2)

There are some obvious relations between some of these polynomials.
E.g. we have

a(n,i,l,z) = a(n,2i,1,2%) + za(n, 2i,1 + i,7%) (1.3)
For

a(n,i,l,z) :Z < L@J >Z2k+

2
+Z<{n+l+g2k+l)iJ>ZZk+l =

=a(n,2i,1,7%) + za(n,2i,1 +i,7%).
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A trivial relation is
a(n,i,l —i,z) = za(n,i,1,z). (1.4)

Therefore we only need to consider [ € {0,1,...,i —1}.
It follows that

a(n,1,1,z) =a(n,2,1,2%) +za(n,2,1+ 1,7*) =

ntl

= (1 +Z2)n (Z_ZL ZJ +ZI_ZL%J) =
=(1+2)(1+2)"z"".

Thus
a(”v 17 l7 Z) = (1 + Z)(l + Zz)nz_"_l. (15)
In other cases we cannot hope to find explicit formulas. But it turns

out that they satisfy simple recurrence relations.
We shall prove the following

Theorem 1.1. The sequence of the polynomials (a(n, i,1,z)),~ satisfies
the homogeneous recurrence B

e . 1
Z<—1>’<’ f)#a(nw—zj,i,l,z) = <z+—)a(n,i,l,z)
— J 1—J Z
J<3
(1.6)
with constant coefficients.

Before proving this theorem let us make some remarks.

For i=1 we get the recurrence a(n+1,1,1,z) = (Z-i-%)'
-a(n,1,l,z).  Since  a(0,1,1,z) = (L;J )z*’ + (L#J )z*l“ =
771 + z) we get (1.5).

For i = 2 the recurrence reduces to

(z+1)?
Z

aln+2,2,1,z) = a(n,2,1,7).

This is arecurrence of order 2. Therefore we need 2 initial values. These
are a(0,2,1,z) = 7l a(l,2,1,z) = (1 + z)z’L%. Hence (1.2) holds.

Everyone familiar with Fibonacci numbers recognizes the coeffi-
cients on the left hand side of (1.6). These occur in the Lucas poly-
nomials L, (x,s) which are defined by

Ly(x,s) = xL,—1(x,s) + sLy,_2(x,s), n > 2, (1.7)

with initial values Ly(x,s) = 2, Ly (x,s) = x.
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They are explicitly given by L,(x,s) =3, (nf/) E g
From (1.7) we see by induction that J

Ly(x,1—x)=1+(x—1)" (1.8)

holds.
Consider now the vector space of all functions f on the nonnegative
integers and define the translation operator £ and the finite difference

operator A =E — 1 as usual by Ef(n) =f(n+1) and Af(n) =
f(n+1) —f(n). Then (1.8) implies

Li(E, =A)f (n) = f(n) + A (n). (1.9)

For f(n) = (") this reduces to

(0)+ (1)) -

_ Z(_1)-"<i;j> i (”H_.ZJ) (1.10)

j<i 1= r—=J

This holds for all values r € Z. As a special case we get

V—H(k}l)—HJ + {n—i—i(k;l—l)#—lj =

i—j i n+i—72j
= (—1)j< . >— n+ilk+1)—2j+1 =
i 7=\ 2 J

SR () ey )

If we multiply both sides by z* and sum over all k € Z we get (1.6).
Thus our theorem is proved.
In order to give some impression of the operators

Ai(E) = Z(—l)’(i ;J) #El’—% =L(E,-1)

i—J
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we explicitly state the first ones:

A¢(E) = E® — 6E* +- 9E* — 2

For i =5 and z = —1 the theorem tells us that sequence b(n,l) =
a(n, 5,1, —1) satisfies the recurrence (E°> — SE* + 5E + 2) b(n,[) = 0.
From E> — 5E3 + 5E 4+ 2 = (E 4+ 2)(E* — E — 1) it is clear that the
Fibonacci numbers satisfy the same recurrence.

Computing the initial values immediately gives b(n,0) = b(n, 1) =
F,+1 and b(n,2) = F,, thus proving (0.1) and (0.2).

Remark:

If we only want to prove that the sequence of polynomials
(a(n,i,1,z)),~, satisfies a homogeneous linear recurrence with con-
stant coefficients of order i, it suffices to show the following

Lemma 1.1. For each integer n > 1 there exist integers such that
1+ =Y anj(x + 1) Y% holds.

For this implies that 1+ A" =", ;E""%// and the argument
continues as above.

In order to prove the lemma observe that for each j, 0 <j <7, the
polynomial (x + 1)" " %¥ is symmetric about 2. If we ehmmate the
coefficients of ¥/, 1 <j < |2],in (x+ 1)" we get therefore 1 + x".

It turns out that for z = 1 and z = —1 there are simpler recurrences.
We consider first the case z = —1.

First we notice that because of (1.4) we have a(n,i,l+i,—1) =
—a(n,i,l,—1). Therefore we need only consider / € {0, 1,...,i — 1}.
For small values of i we can find explicit values for these sums.
Thus we have a(n,1,l,—1) =0 for all /[ € Z and a(n,2,0,—1) =
a(n,2,1,—1) = [n = 0], where the symbol [P] equals 1 if the as-
sertion P holds and it is O if P does not hold.

Further we have a(n, 3,0, —1)=a(n, 3,1, —-1)=1 and
a(n, 3, 2, —1) =0, a(n, 4, 0, —=1) =a(n, 4, 1, —1) = 23

a(n, 4,2, —1) = —a(n, 4, 3, —l)—Ofor even n, a(n, 4,2, —1)
—a(n, 4,3, —1) = 2l'7 for n odd, and finally a(n, 5,0, —1) =

a(n, 5,1, =1) =F,41, a(n, 5,2, —1) = —a(n, 5,4, —1) = F,, and
a(n, 5, 3, —1) =0.

Y
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It turns out that our results differ for even and odd values of i.

2. Sums of the Form Ekez(—l)k( L”*gk*lJ >
2
We first prove

Theorem 2.1. The sequences (a(n,2i,l,—1)) satisfy the homoge-
neous linear recurrence

Z(—lY(i]_.j),L,Ei2f'a(n,2i,z,—1)_o (2.1)

Jj<i L=J
Remark. If we denote the operator on the lefthand side by
(i —] ] o
o) = -0 () B = 1), ten
J<i J 1—=J

By (E) = A(E).

The sequence (a(n,2i,1,—1)) satisfies therefore both the recurrences
Ai(E)a(n,2i,1,—1) = 0 and (Ay(E) + 2@)a(n,2i,1,—1) = 0.
In order to understand this situation note that
in(x, —1) + 2= (L,‘()C, —1))2.

This follows immediately from the well-known formula (cf. e.g. [3])

Ly(x,s) = <x—+ \/;“7‘”) + <x—_ \/m>". (22)

2

In order to prove (2.1) we observe that

n n
T+AY yr42ik+1) | = | | r+2ik+1) |+
) \==]
n
+ {r+2i(k—l)+lJ
2

This implies (I + A')a(n,2i,1,—1) = 0, because it turns out to be a
telescoping sum.
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Now we know that 1+ A’ = 3" a;;E=%/ for some coefficients
a;;. If we apply E-YN to (L’*";Zik J) we get
n+i—2j
V+i_2j+l_i+2ikj
2

Hence we get ) a;;a(n, 2i,1 — i,—1) = 0. Since this holds for each /,
our theorem is proved.

3. Sums of the Form Zkez(_1>k< Lw(zﬁmw )
In order to study a(n,2i — 1,1, —1) we observe that
a(n,2i— 1,i+1,—1) = —an,2i—1,i—1,—1).  (3.1)

Since n = [gJ + anilj we have

o V+(2i—21)k—l+iJ _ V—(zi—l)(écﬂ)—iﬂJ.

This means that the term with index k in a(n,2i — 1,i — [, —1) is the
opposite of the term with index —(k + 1) in a(n,2i — 1,i 4+ 1,—1).
As special cases we get

a(n,2i —1,i,—1)=0 (3.2)
and
a(n,2i —1,1,-1) = —a(n,2i — 1,2i,—1) = a(n,2i — 1,0, —1)
(3.3)
Therefore we get
2i—1
a(n,2i—1,j,—1)=0. (3.4)
j=1
But we also have
i—1
a(n,2i—1,2j,—1) =0, (3.5)

1

J
because
a(n,2i —1,2i —2j,—1) =a(n,2i — 1,i+ (i — 2j),—1) =
=—an,2i—1,i—(i—2j),—1) = —a(n,2i — 1,25, —1).
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Thus also
D a(n2i—1,2j—1,-1) Za n,2i—1,2j—142i—1,-1)=0
= =
which implies 2 a(n,2i —1,2j,—-1) =0.

As a consequence we get that the sum over 2i — 1 consecutive
values of the form a(n,2i — 1,1 — 2j, —1) vanishes and therefore we

have
i1
> a(n2i—1,1-2j,-1) =0 (3.6)
j=—itl
for each [ € Z.
This is equivalent with
i1 i-1
> a(n,2i—1,1-2j,-1) = > a(n,2i— 1,1+ 1-2j,—-1) =0
=0 =1
(3.7)
Each term in a(n,2i —1,1,—1) has the form f(n,r k,[) = (—1)
(Lf+z+&4)kj> with r =n and a(n,2i —1,1,—1) is a finite sum of
2

expressions f(n,n,k,1)— f(n,n,k + 1,1).

Given r and / we may choose one of two consecutive k’s such that
r—+ 1+ (2i — 1)k is even.

Then we have

f(nvrvkal_zj) _f(n7r7k+1>l_2j):

= N(f(n,r, k1) = f(n,r,k +1,1)) (3.8)
If we set
n
b(n,i,l,r) = Z(—l)k r+ik+1) |,
=\l

then we have
i—1

0= > a(m2i-1,1-2,-1)=

j=—i+1
=(1+A+-+A"Yb(n,2i —1,1,r),_,—
—A(L+A+ -+ A )b(n,2i — 1,1+ 1,7)

r=n
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If we define the Filbonacci polynomials F,(x,s) by the recurrence
Fu(x,s) = xFy_1(x,s) + sF,_»(x, s) with the initial values Fy(x, s) = 0
and Fi(x,s) = 1 then we have

n=1—j\ a1
F.(x,s) = . X
=52 (")
J<*5
It is immediately verified that
Folx,1—x) =14+ @x—1) 4+ x—1)""

holds.
Therefore (3.7) may be formulated as

(Fi(E, —A)b(n,Zi — 1, l, 7‘) — AFl;l(E, —A)

-b(n,2i—1,1+1,r)),_,=0 (3.9)
Now we have
n
EYN V+l+ (2i — l)k =
2

n—2j
= Ln—ZJ—l—l—i— (2i — 1)k

and

=E7 VH_H— (2i — 1)k ) (3.10)

EI AN VJFZJF 1+ (2i — 1k

n—2]—1
= {n—2j—l+l+(21’—l)kJ =
2
n
=g 7! [n+l—|—(2i—1)kJ (3.11)
2

Therefore (3.9) is equivalent with
(Fi(E,—1) = Fiy(E, —1))a(n,2i — 1,1,—1)) = 0.
This implies
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Theorem 3.1. The sequences (a(n,2i — 1,1,—1)) satisfy the homo-
geneous linear recurrence

(F{E,—1) = Fi_{(E,—1))a(n,2i — 1,1,—1)) = 0 (3.12)

The operators C;(E) = F;(E, —1) — F;_1(E, —1) are for small values i
explicitly given by

Ci(E) =1

Cy(E) = E —

C5(E) :EZ—E— 1
C4(E)=E>—F*-2E+1
Cs(E) =E*—E* —3E*4+2E -1

As an example consider i = 3. We get
an+2,51,—-1)—amn+1,51,-1) —a(n,5,1,—1) =0.

Thus a(n, 5,1, —1) satisfies the recurrence of the Fibonacci numbers.
By choosing the appropriate initial values we get again formulas (0.1)
and (0.2).

To understand the relation between Theorem 1 and Theorem 3 we
note that

(Fu(x,=1) = Fu1(x, = 1)) (x +2) = Loy _1(x, —1) + 2
holds. This follows from the well-known formula (cf. [3])
1 x+VaFas\" (x— Va2 4s\"
) ()

Fu(x,s) =

(3.13)

in connection with (2.2).

4. Sums of the Form ), _, < L”*;:”’J )
2

Simpler recurrences than in the general case are also possible for z = 1.
We must again distinguish between even and odd i.
Let us first consider the sums a(n,2i,/, 1). Here we have

(Ai_l)z<r—|’—1ik>_0'
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We know already that F,(x,1 —x) =1+ (x—1)+-- -4+ (x—1)""

holds and therefore we may write
A" —1=(E-2)F{(E,—A).
For n 4 [ = 1(mod2) we have

n
E¥ nt2ik+1) | =E7N
liJ r),— Ln+22ik+lJ

2
and
, n , In
E2’1< n+2ik +1 >=E2’1A’< ) e
LfJ r),— \_}‘H»ZZIIPHJ

If n 4+ = 0(mod2) we have

(ian ) - (esioren )

Thus in each case we get

(E —2)F;(E,—1)a(n,2i,1,1) = 0.
This gives

Theorem 4.1. The sequences (a(n,2i,1,1)) satisfy the homogeneous

linear recurrence
(E — 2)Fi(E,—1)a(n,2i,1,1) =0

These operators are for small values of i given by

Dy(E) = E* —2E° —2E* + 4E
Again this is connected to the formula

Lyi(x,—1) =2 = (x* — 4)(Fi(x, — 1))’
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5. Sums of the Form ), _, ( Ln+(2i’jl)k+lJ )
2

Now remains the case a(n,2i — 1,1, 1).
Our aim is the following theorem.

Theorem 5.1. The sequences (a(n,2i — 1,1,1)) satisfy the homo-
geneous linear recurrence

(Li(E, —1) — Li_1(E, —1))a(n,2i — 1,1,1) = 0.

In order to prove this observe that
a(n,2i —1,1,1) =a(n,2i — 1,14+ 2i—1,1)
and therefore
a(n,2i —1,1,1) +a(n,2i — 1,1—-2i,1) =

=(a,n,2i —1,1—-1,1)+a(n,2i —1,1+1—-2i,1) (5.1)
The same reasoning as in (3.8) gives
(1+ AYa(n,2i — 1,1,1) = A(1 + A" Ya(n,2i — 1,1+ 1,1).  (5.2)
From (3.10) and (3.11) and (1.9) we see that (5.2) means

(Li(E,—1) — Liy(E,—1))a(n,2i — 1,1,1) = 0.

Thus our theorem is proved.
We note again the corresponding formula for the Lucas poly-
nomials

(x — 2)(Lan_1 (x, —1) — 2) = (Ly(x, —1) — L,_1 (x, —1))*.

6. Sums of the Form ), _, <L”*?”’J )zk
3
We first prove the

Lemma 6.1. For each integer n > 1 there exist integers such that
L+ (=1 =) ane+ )"+ b+ 1)V (6.1)

holds.

Let us make some comments. We are looking for a term of the
form 1 + a(n)x" which occurs on the right hand side, i.e. which is a
linear combination of the polynomials (x + 1)" V¥, 0 < j <% and
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(x+ 1) ¥, 1<j< 2. The only polynomial of this form which
contains 1is (x + 1)". For odd n this is also the only one containing
x". Thus a(n) must be 1 in this case.

If n = 2m there is another polynomlal of this form which contains
x", namely (x + 1)"x" = (x + 1) ¥ In order to obtain a linear
combination of the form 1 + a(n)x" we must find b such that the
coefficient of "~ in (x + 1)*" + b((x + 1)"x" equals 0. Thus b =
—2 and the coefficient of x" must therefore be —1.

n
2

Proof of Lemma 6.1:
To prove this define polynomials

Un(x,8) = x0,-1(x,5) — sv,-3(x,s) (6.2)
with initial values

vo(x,s) = 3,v1(x,5) = x, 02(x,5) = (6.3)

Then v,(x, ) = > 3, dn X3¢ for some coefficients .

This is easily proved by induction.
It is not difficult to determine these polynomials explicitly: For
n > 0 we have

e = (") e e

3j<n J n—72j

For the recurrence is easily verified and the initial values coincide for
n=1,2,3.
Consider now

(x4 1,x) = z:a,,,,xjL ) 3y

3i<n
These polynomials satisfy the recurrence
Ua(x+ 1,x) = (x + Dvp—1 (x + 1,x) — xv,3(x + 1,x).

The characteristic polynomial of this recurrence is A* — (x + 1)\? + x
with A =1 as one root. Dividing this polynomial by A — 1 we get
A2 — X\ — x.

Now we know that the Lucas polynomials

L(x,x) = Z(”J,‘f> L Z(n : l_) Ly

1
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satisfy the recurrence L,(x,x) = xL,_1(x,x) 4+ xL,_»(x, x). Therefore
they also satisfy L,(x,x) = (x + 1)L,—;(x,x) — xL,_3(x, x).

The initial values are Ly(x,x) =2, L;(x,x) = x.

Since the constant polynomials also satisfy this recurrence we see
that v,(x + 1,x) = L,(x,x) + L.

Next we define polynomials

Wa(x,5) = xsw,_o(x,8) + s*w,_3(x, 5) (6.5)
with initial values
wo(x,s) =3, wi(x,s) =0, wy(x,s) =2xs (6.6)

Then w,(x,5) = Y 3ics, bujx®" Vs for some coefficients b, ;. This may
be proved by induction.
For n > 0 these polynomials are explicitly given by

n — / n n—3j i

3j<on

This is again easily verified.
Consider now

)23
wp(x + 1,x) = E byj(x+1)" ¥
3j<2n

These polynomials satisfy the recurrence
wo(x + 1,x) = x(x + Dw,_2(x + 1,x) + Pw,_3(x + 1, x).

The characteristic polynomial of this recurrence is A* — x(x + 1)\ — x
with A = —x as one root. Dividing this polynomial by A\ + x we get
again A2 — x\ — x.

Thus wy(x + 1,x) = L,(x,x) + a(—x)".

Comparing the initial values we see that a = 1.

Therefore we get

2

p(x 4+ 1,x) —wu(x+ 1,x) =1 — (—x)".
Thus our lemma is proved.

Therefore we also have
W(E,A) — wi(E,A) = 1+ (~1) A (6.8)

for all i.
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If we apply this to () we get

(rrz>+(_1 ( > Zald<n—|;l 31) Zbu<n+r2i]_~3j>

Now let r = LMJ
Then we have

<{n+i(§+l)J> + (=07 <V+i(§—2)J> =
n+i—3j
Zzai,i(v—ﬁ—l-i(k—i—l)J)-F

3

n+2i—3j
+Zbi.j<{n—3]+ (k+1)J>

3

Multiplying this identity by z* and summing over all k we obtain

Theorem 6.1. The sequence

a(n,i,1,3,z) ::Z ( Ln—i_?k—HJ >Zk

kez 3
satisfies the recursion

(v;(E, 1) + zw;(E, 1))b(n,i,1,3,7) = <%+z2>a(n, i,1,3,2) (6.9)

7. Sums of the Form ), , (LLJ )zk

Now we want to prove a general result on sums of the form

a(n,i,l,m,z) = Z ( Ln—i_?k—HJ )Zk

keZ m

We need the following
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Lemma 7.1. For each pair of integers n> 1, m > 1 there exist
uniquely determined integers ay,; such that

m—1 ]f_nn
P
(1+x)"+z ;) Apmj(x+ 1)" =1
=

k=1 J:[ lvn—ln

or equivalently

142"+ i (x+ 1) mmedn) i 7.1
i,y

where x(modn) denotes the least nonnegative representative of the
residue class modulo n and ay,; = 0 if (—mj)(modn) +j > n.

There is a useful reformulation which has been inspired by a
remark of G. Kowol (private communication): If (7.1) is true and we
replace x + 1 by (,, a primitive root of unity of order n, then we get

> it AnmiG " (Cn — 1Y =0.Thus ¢, (¢, — 1) is aroot of the polyno-

mial 7 | @nm;¥ . The most obvious polynomial having ¢, (¢ — 1)

as a root is 271 ¥ = Hk L= ¢ —1)). If byymy = 0 for
all j with (— m])(mod n) +j > n then the polynomials

anmj x+1 )(modn) i

and (1 +x)" — 1 both have degree n and the roots 0 and A, = ¢* — 1,
1 <k < n— 1. Therefore they are proportional. Now we have

—1

b = (-1 T - 0 =" T - ¢ =

k=1 k=1

=

1

m(n 1) YH

=1

=~

From [/} (x — ¢%) ==l we get [[}_ 1(1=¢*) =n and thus we
have

bn,m,l = (—l)m(nil)n.
Thus we get

(1 +x>n . mn 1) z bnm,/ x+1 —mj)(modn) J—1 (72)

1<j<n

and Lemma 7.1 is proved.
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Therefore our assertion is reduced to

Lemma 7.2. Let mn € Z, n > 0 and let (,, be a primitive root of
unity of order n. If we set

n

Zn:bn,mﬂj = [TG—= ¢ (¢ =), (7.3)

k=1

then b, ,,j = 0 for all j satisfying {77"”} +% > 1 where {x} denotes
{x} =x—|x].

The following proof is due to Prof. Andrzej Schinzel [4].
Let s; be the j’th elementary symmetric function of

GG —1), 1<k<n,
and p; the j’th powersum of those numbers.
Lemma 7.3. If {%} > L then p;=0,1 <j < n.
Proof: We have

b= () o (7.4

i=0
since

n ) n . J (1 .
e
k=1

k=1 i=0

o) S
—0 Y =

1

The inner sum is different from 0 only if i — mj = 0(modn).
But since i < j this implies {2/} <, contrary to the assumption.

Proof of Lemma 7.2:
We shall prove by induction on j < n that
either{ @} < J or s; = 0.

n n

This is true for j = 0. , _
Assume now that it is true for all i < j and that {2/} >,
Then by Lemma 7.3 p; = 0.
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Newton’s formula gives
J—1 i i
> (=1)'pjisi+ (=1)js; = 0. (7.5)
i=0
n have for each ither { 2 i)
]Sllnce{ }> we have for each i < j ei er{ }> or{ }>
This implies by the inductive assumption either s; = 0 or by the
Lemma73pj i = 0.
Thus SY_(—1)'p;_isi = 0 and by Newton’s formula s; = 0.
The 1nduct1ve proof is complete
Now if { =% 41> 1 then {22} > 1o

Hence s,_; = 0 and b, ,,; = (—1)" ’sn,j = 0.
Remark:
G. Kowol pointed out to me that for gcd(m,n) = 1 formula (7.1) may
be written in the following form
n—1
(1 +x)ﬂ + Zan,mj(x + l)kx—m*lk(modn) =14 (_l)m(n—l)xn’
=1
if we put k = —mj(mod n).
Changing x into —1 — x we get

(—x)n—|—Zan,mJ(—l)k_qumOd")xk(l +x)_m7]k(m0d’1) —

— 14 (_l)m(nfl)Jrn(l _|_x)n

This gives the corresponding formula for m~!(mod n).
More precisely we have in this case

(—1 )ﬁ(*mj)(mod n)

Apm=1(modn) k = A,

with k = —mj(mod n).

For example we have (a7, 2J>6 =(-7,14,-7,0,0,0). Now
27'(mod7) =4 and therefore we get (a7,4 1,);11 = ( 7,0, —
0,-7,0).

With the same notation as in Lemma 7.2 we can now prove

Lemma 7.4. For all n,i,r € Z we have the identity

(7)o g () -0
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or

—_

<n;|—i> — i bi,m,/‘<n+ (—mj)<m0di)> _

r—J
= () ()

Proof: This may be derived by multiplying (7.2) by a power of
1 +x and comparing coefficients or by considering the operator
identity

Ei _ (_l)m(i—l) bi,m,jE(_mj)(mOdi)Aj _ 1’

which follows from (7.2) by the homomorphism x — A and applying
itto (7).
Now let r =
Then we have

(pr +(—1)m(il)<{n+i(k—m+l)J> =
n+i
= < Ln—i—i(k—i— 1)J> — (=1y"h.

i1 n+( )(modl)

Multiplying this identity by z* and summing over all k we see that the

Lnﬂ(lﬁ_l)J'

. n . .
sequence a(n,i,l,m,z) = ., ( ksl )zk satisfies the recursion
m

Ez({ziiizkiﬁi>f+%—0”i“

kezZ
m

.Z(VHH(:_mH)J)g:

keZ
m
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Z(lnﬂiﬂ 1)J>Zk_

kez
m

] n+( ])(modi)
m(l )Zb,mJZ<Ln+l+Zk+1) J)Zk

kez
m
This gives

Theorem 7.1. Define h(j) by h(j)i =mj+ (—mj)modi —i. The
sequence

a(n,i,l,m,z) :Z ( [n—i—?k—i—lJ )Zk

keZ m

satisfies the recursion

( i . mz 1) thmjzh(] —mj)modi __
— (1" ”z’"-1>a<n7 i,l,m,z) = 0.

As an example consider a(n,8,0,6,z) =) ., (L”*“J) k,

In this case we have
1+x5 = (14+2)° = 8x(1 +x)> — 122%(1 +x)* + 2x* = 8x°(1 +x)*
and therefore we get the recurrence

(E8 —8E* —12¢E* 427 —8E* —— -2
<

>a(n, 8,0,6,z) = 0.

8. Concluding Remarks

We have seen that there are integers a, ,,; such that

n
(14+x)"+ Zanym‘,»(x + 1)(_mj)(m°d”)xj =1
j=1
holds.
For m =1,2,3 we know the explicit values of the coefficients
an mj. Professor Schinzel has informed me that for n odd and m = %
explicit values may be obtained from formula (8) in [2]. There it
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is shown that (x+1)""'—1= Do sixd (x4 1)"7  where
n T 21 — 27j ds — o1  ntit+l
2057 =TTy (2 +2( ‘fosznﬂ)) and 5 =it \ g )
Here we have m = n 4 1 since
n—j=—(n+1)(2j+ 1)mod (2n + 1).

This is a special case of our results because we have

ZSZZ]_HZ+C (n+1)k Ck))

n n n

_ (Z+an - H Z+an nk) H(Z_ (an o Cfnk)) _

1 j=1 j=1

nk nk . 2 2mnk
(- (¢ “)‘kH]<Z‘2°°Szn+1“>'

From —nk = (n+ 1)k(mod2n + 1) we see that this also equals
[Tizr (2% = 2cos 25+ 2).
In the general case we have only some special explicit results.
First we show that Newton’s formula gives a recursion for the
coefficients by, ;.

:;emma 8.1. Let dyyj = (1)~ )(mOdn)”< (i (modn) ) Forj <nwe
ave

[

~.
I

I
E:

k

nl’l‘l}’l—j anmn i nm,/ i (8'1)

with initial value b, ., = 1.

Proof: (7.4) gives pj = dy nj, j < n.

Finally we want to show how the formulas (6.4) and (6.7) for
m = 3 can be generalized to arbitrary m to give explicit values for
some coefficients.

To do this it is convenient to define O(modn) = n and a, o = 1.

Lemma 8.2. a,,,; = (—1)#'(”*(";*”") A for0<j<E

Proof-
It suffices to show that in

n—

n

J=0

all coefficients of x’ up to j = | £ | vanish.
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The coefficient of x” in this sum is given by

zr:(_l)j(n—(m—l)j) n (n—mj>
=0 -] n_(m_l)j r_j
for all r such that r < [ 2 ].

Now

jz_r(;(_l)j(_(?_l)j)m(nr__?j) _
r|z ( )”_( —)j—1)-(n—(m—1)j—r+1)=
A'p(j) =0

for some polynomial with deg p(x) < r and the lemma is proven.

Remark. It is easily verified that for n > 0

v(n,m,x,s) = SR D/ P x "
o) = (")

coincides with the sequence defined by the recurrence
v(n+mym,x,s) =xv(n+m—1,m,x,s) + svo(n,m,x,s)
with initial values v(0,m,x,s) = m, v(i,m,x,s) = x, 0 < i < m.

Lemma 8.3. Let w(n,m, x,s) = (—1)"t(n,m,x, (=1)""'s) with

_ n—j n lm=tn=mjg
t(n,m,x,s)—E((m_l)n—mj>n—jx "

Then Z 20 Ay mﬂ( miymodng — yvo(n,m, x,s) for m > 2.

Proof: We know already that ay,,,; # O for these values of j only if
(m_z)ngjg(m_l)nor—gn—jﬁ ‘
m—1 m m m—1
Letk=n—j.

For m > 2 it is evident that if 0 <kj + ky <25 for positive
numbers k; there is at most one k; >7. For k<! we have
{k’"} k’" > k and therefore py = 0 by Lemma 7.3.

Thus 21:1 nmn—iPk—i = 0 for each k < | -1 |.
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Newton’s formula now tells us that py = —kby, 1 k.
k

mk—n

bpmj = (—1)(m_1)(n_j)+n+l ( (m_r;)_i_mj) ﬁ as asserted.

By Lemma 7.3 we have p; = (—l)k_kar”( ) This implies

Remark:

It is easy to verify that 7(n,m, x, s) may be characterized for n > 0 by
the recursion

tn,m,x,s) = xs"2t(n —m+1,m,x,s) + 5" 't(n — m,m, x,s)
with the initial values
t(0,m,x,s) = m,t(1,m,x,s) = ---t(m —2,m,x,s) =0,

tm—1,m,x,s) = (m—1)s">
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