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Abstract

Let p be a primitive jo-th complex root of 1, C[x] the ring of formal power series in x
over C, and let a(x), b(x) € C[x]. We study the two equations

@(px) = alx)p(x) + b(x) (L)
and

p(px) = a(x)p(x) (Ln)

for ¢ € C[x], which occurred in connection with an interesting and important special
case when dealing with the problem of a covariant embedding of (L) with respect to
an iteration group. (See H. Fripertinger and L. Reich. On covariant embeddings of a
linear functional equation with respect to an analytic iteration group. Accepted for
publication in the International Journal of Bifurcation and Chaos.) We describe
necessary and sufficient conditions for finding nontrivial solutions of (L) and for
finding solutions of (L) in the form of ‘“‘cyclic” functional equations for a and b.

* Supported by the Fonds zur Foérderung der wissenschaftlichen Forschung
P14342-MAT and by the Faculty of Science, Karl-Franzens-Universitit Graz.
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Then we describe the set of all solutions of these functional equations and present
different representations of their general solutions.

Mathematics Subject Classifications: 39B50, 13F25.
Key words: Linear functional equations, formal power series, cyclic functional
equations.

1. Introduction

About linear functional equations there exists a rather rich literature.
The main sources are [6] chapters 2, 8, 13, and [7] chapters 2, 3, and
4, where the general ideas for solving such equations, like iterating
them, can be found. However, it seems that the setting of formal
power series has not been studied so far in detail. For a foundation of
the basic calculations with formal power series we refer the reader to
[5] and to [2] or [3].
We study the linear functional equation

p(px) = a(x)p(x) + b(x) (L)
for ¢ and its homogeneous form
p(px) = a(x)p(x) (Ln)

in C[x], the ring of formal power series over C. We always assume
that ord a(x) = 0, whence a(x) has a reciprocal (i.e. a multiplicative
inverse) in C[x], and p is a complex primitive root of 1 of order
Jjo- This problem occurred in connection with an interesting and
important special case when dealing with the problem of a covariant
embedding of (L) with respect to an iteration group. (See [4].) First
we determine necessary and sufficient conditions on a(x) for the
existence of non-trivial solutions of (L;) and describe the set of all
solutions in these situations. Then under the assumption that (L;) has
non-trivial solutions we investigate under which conditions (L) can be
solved. The set of all solutions of (L) can easily be described then
as the set of all series of the form (%) (x) 4 9(x), where ¢ is a
particular solution of (L) and (x) is an arbitrary solution of (Lj).
In Lemma 2 we determine necessary (and, as it finally turns out,
sufficient) conditions on a(x) (cf. (1)) for the existence of non-trivial
solutions of (Lj;). From Lemma 3 it follows that we can always assume
that a(x) = 1 + a;x + - - -. Then in Theorem 5 the general solution of
(Lp) is presented, from which we derive projection formulae and other
representations (2,{y) of the general solution in Lemma 7 and
Theorem 8. Finally, in Theorem 9 we present a situation in which it is
possible to describe the general solution of (L;) by each of these
different representations (2,fy). The previous results are summarized
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for the case when a(x) = p* + a;(x) + - - - in Theorem 10. Another
form of the general solution of (L) is given in Theorem 12. At the end
of Section 2, starting with Lemma 13, we describe necessary and
sufficient conditions on b(x) (cf. (7)) for the existence of solutions of
(L). The general solution of (L) is presented in Theorem 15.

In Section 3 we apply the formal logarithm, which finally allows to
describe the conditions (1) and (7) in more details (cf. Proposition 16
and Proposition 20). We also get another representation of the general
solution of (L;) in Theorem 18 and polynomial expressions for
the coefficients of a(x) and b(x) in Proposition 16, Remark 19,
Proposition 20, and Remark 32.

It is our main aim to work out the specific features of equations
(Ly) and (L) in the setting of formal power series. Therefore, it seems
important to present explicit formulas for the coefficients of the
general solution, which is done in Section 4 in Theorem 22 and
Theorem 23. These expressions for the coefficients imply also neces-
sary and sufficient conditions (16) or (20) for the existence of a non-
zero solution of (L), respectively of a solution of (L), in a form
different from the compact equations (1) and (7).

The next two sections apply methods from linear algebra. In
Section 5 we consider systems of (homogeneous) linear functional
equations by replacing in (L) or (L) the variable x by px, ..., o0 !x.
Then we derive the conditions (1) and (7) as rank conditions on
certain matrices.

In Section 6 we introduce a direct decomposition of C[x] into
subspaces ((D[[x]])(k) consisting of power series of the form ~y(x) =
ankmodjo v,X". This also allows to apply methods from linear
algebra, so that the conditions (1) and (7) can again be expressed as
conditions on the rank of certain matrices (cf. Proposition 26). The
solutions of (L;) or (L) can be computed as solutions of systems of
linear equations and are given in form of determinants (cf. Theorem 28
and Theorem 30). In Theorem 29 we derive an interesting identity
by comparing these different representations of the condition on a(x)
for the existence of a non-trivial solution of (L,). Finally, Theorem 31
describes a generalization of Theorem 12.

Then in Section 7 we investigate under which conditions so-
lutions of (L), (L), (1), and (7) are holomorphic in a neighborhood
of 0.

The results of this paper are derived for the substitution px into
©(x). Corresponding results also hold when px is replaced by a
formal power series of the form p(x) = S~!(pS(x)), where S(x) = x+
sox% - -+ € C[x].
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Theorem 1. Let p(x) = S (pS(x)) for S(x) = x + spx* - - € C[x].
The formal power series ¢(x) is a solution of

p(p(x)) = alx)e(x) + b(x) (Lp)
if and only if ¢ := p o S~ satisfies
2(py) = a(y) () +b(), (L)

where a:=aoS ' and b :=bo S !.

Proof: The formal series ((x) satisfies (Lp) if and only if
p(S7!(pS(x))) = a(x)ip(x) + b(x),

which is equivalent to

(9o S™)(pS(x)) = (a0 S™)(S(x))(w 0 ST)(S(x)) + (b o S™)(S()),

which is equal to (L) after replacing S(x) by y. O

Theorem 1 allows to rewrite our results for the general form (Lp) of
the linear functional equation, where p(x) € C[x] satisfies

pio(x):X, pk(x)7éxfor0<k<jo-

This condition is equivalent to the existence of an invertible series
S(x) = x4 sox* +--- and a primitive root p of order jy, such that
p(x) = S71(pS(x)). (Cf. [11] Theorem 1, page 248.) We will give
some of the details at the very end of this paper in Section 8.

Whenever it is useful we write the series ¢(x), a(x) and b(x) €
C[x] in the form

o(x) = Z@nx", a(x) = Zanx", b(x) = anx".

n>0 n>0 n>0

Most of the notation coincides with the notation used in [4]. For
that reason, for instance, the order of p is denoted by jj.

2. Iteration of the Linear Equation

Our first results are just derived from iterating the linear functional
equation.

Lemma 2. If ¢(x) # 0 is a solution of (Ly), then

o) = [[alo'x)olx), n>0
(=0
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and

Ji:[ a(px) = 1. (1)
=0

Proof: The first statement is proved by induction over n. For n = 0
everything is clear. Assume that n > 0, then

e(p"x) = @(pp"'x) = a(p""x)p(p"'x) =
n—2 n—1
a(p"'x) | [ a(p'x)e(x) = H a(p'x)p(x)
=0 =0

For n = jo we get o(x) = ¢(pPx) = [[}=y a(p'x)p(x). Since o(x) #
0 we get the second result. O

The necessary condition (1) can also be found in [6] as formula
(8.5) on page 182.

For (x) € C[x] and £ € Ny let 1;(x) be given by 1),(x) := x‘4p(x).
(For this type of transformations of the unknown function see [1]
page 59.)

Lemma 3. The series 1)(x) is a solution of (Ly,) if and only if 1y(x) is a
solution of

o(px) = p'a(x)e(x) (%)
fOl’ ¢ € N.

Proof: First assume that t(x) is a solution of (L;). Then ,(px) =
p'xta(x)(x) = p'a(x)y,(x). Hence y(x) is a solution of (Ly, £). Con-
versely, assume that 1),(x) is a solution of (Ly, £). Then p'x‘+)(px) =
Glpx) = plalx)iy(x) = pa(0x'p(x), whence (pr) = a(x)(v)
This means that v (x) satisfies (L), and the proof is finished. 0

From Lemma 2 we deduce that when there exists a nontrivial
solution of (L), then the coefficient a¢ of a(x) is a complex jo-th root
of 1. Consequently, there exists an integer ¢y € {0,...,jo — 1} such
that a(x) := pa(x) = 1modx. Assume that £y # 0. If 9(x) is a
solution of (Lj, ¢y), then also );,(x) is a solution. From Lemma 3 it
follows immediately that t(x) := x°~“4)(x) is a solution of (Ly),
since ), (x) = 1; (x) is a solution of (Ly, o). Hence, without loss of
generality we can always assume that ap = 1.
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Lemma 4. Assume that ap =1 and that ¢(x) # 0 is a solution of
(Lp). Let p(x) = 3,50 pnX", then

3 ﬁ a(ﬂ[x)] Jo Y @ix™. (2)
=0

(=0 t>0

o) = [

n

Proof: Computing the sum of ¢(p"x) for n from 0 to jo — 1, we
obtain

Jo—1 Jo—1 Jo—1
IETATD 3 WAL P W
n=0

n=0 m>0 m>0

. 17
= Jjo E Prjox”,

>0
since

"()le,,m _ { 0, if m % 0modj

e Jo, if m = 0mody.

From Lemma 2 we deduce that

Jo—1 Jo—1n—1

Y el = a(p'x)p(x).

n=0 n=0 (=0
Since ap=1 and therefore > | (p X) =jomodx, it is
possible to find the reciprocal of Z’O | o a(p'x) in C[x], whence
©(x) is of the given form. O

Theorem 5. If the series a(x) satisfies (1) and ay =1, then the
general solution ¢(x) of (Ly) is given (similar to (2)) by

0 ¢ >0

Jjo—1 n—1
[ZHa px] Jo Y A, (2)

where Y7,y x% € C[x] is arbitrary. Furthermore, @y, = @5 for
t>0.
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Proof: Taking into account that p/© = 1 we derive from (2') that ¢(px)
equals

<t
c
._.
S
|

p(px) = a ”lx)] jo Y gt =

>0

[jo—1 n
_ * _tio
= a(p'x) JOZ%,(, 0

| =0 =1 =0
[jo—1 n T

= a(x) a(pZX) Jo Z o =
L n=0 ¢=0 i >0
[ jo n—1 T

= a(x) a(pZX) Jo Y a.
=1 =0 | =0

which equals a(x)¢(x). From Lemma 4 it follows now that the
coefficients ¢, for n = 0 mod j are the prescribed complex numbers
py;, for 1>0. O

For later use we just mention the formula

Jjo—1 n—1 -1 Jjo—1 n—1 -1
[ Ha H ] [ZHa px] . (3)
n=0 (= n=0 (=0

As an immediate consequence of Theorem 5 we find

Remark 6. If, under the hypotheses of Theorem 5, p(x) #0 is a
solution of (L), then necessarily ord p(x) = fojo for some ty € Nj.

Proof: The series ¢(x) #0 is a solution of (L;) if and only
if leo QX" #0. If tho @7 # 0, then szo DX =
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D imn PiX with gy, # 0, for some fy. Then (2) yields the

assertion, since
Jjo—1n—1 -1
ord a ,0 x)| =

n=0 (=0

and

>t

(]

For a solution ¢p(x) = ) -, wax" of (L) where a(x) satisfies (1)
we get from (2) conversely that the partial series ) ¢, x" of p(x)
is given by the so called projection formula

Jjo—1 n—1
3ot = 1 (S et ot @
>0 n=0 (=0
We may, similarly, consider the partial series ) ., go,joJrgoxtj"M" of
@(x) for 0 < 4y < jo, and ask whether an analogous expression for
these partial series holds. For 0 < ¢y < jo let

Jo—1

)= 3 Tt )

n=0

We get

Lemma 7. 1. Let p(x) = ), pnx" be a solution of (L) and assume
that a(x) satisfies (1) with a(x) = 1 mod x. Then

. 1
> Pirrad 0 = — Ay, () () (4, to)
>0 Jo
for 0 < 4y < jo. If Ag,(x) # O, then
4,0( ) [A(o JO Z SpfjoJr/ox] oth, (27 EO)
=0

2. If a(x) is a solution of (1) with a(x) = 1 modx and Ay, (x) # 0,
then

ord Ay, (x) = £y modjo.

Proof: The proof of 1. is the same as the proof of Lemma 4. In order
to prove 2., let ¢(x) be the solution of (L) such that ) -, ¢, x" = 1.
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This solution exists by Theorem 5. Then by 1. either Ay, (x) = 0 or its
order is congruent ¢y modulo j, since ord (x) = 0. |

We also obtain in the same way as Theorem 5.

Theorem 8. Let a(x) be a solution of (1), a(x) = 1 modx, and let
0 < ¥y < jo. Assume that Ay (x) #0 and (by the second part of
Lemma T) ord Ay, (x) = tojo + Lo for some ty € Ng. Then the general
solution o(x) =Y o pnx" of (Ly) is given by (2,{y) with an
arbitrary series Y- @ijor0,X" . The coefficients o, of ¢(x) with
n = lymodjo and n > tojo + £y are the prescribed complex numbers
Prjo+Lo fort > 1.

If the coefficients ai,...,aj,—1 of a(x), a solution of (1), are
sufficiently general, then the solutions ¢(x) of (L) can be described
by (2, 4p) for any ¢y € {0, ...,jo — 1}. We will see in Proposition 16
that there exist solutions a(x) of (1) for which the coefficients
ai,...,a;_1 can be chosen arbitrarily.

Theorem 9. Assume that a(x) =14+ ayx+ --- is a solution of (1),
where the coefficients ay,...,aj,—1 are algebraically independent
over Q, then Ay (x) # 0 for all 0 < £y < jo.

Proof: From the definition of A (x) it follows that

jo—1
Al/o (x) = 02: p—n&) Z ( Z Ayy Ay, -
n=0

r>0 Nvotetvpo1=r

P )

vy +21/2+~-+(n—1)1/,,1)xr

whence the coefficient [A,(x)]; _, of ¥°~! in Ay, (x) is of the form

Jo—1
— E —nby § L. V1420044 (n—1) vy
[AZO(X)]jofl - p ay, ay, P .

n=0 U0+-~-+D,l,]:j071

A summand of [Ay, (x)]; _, consists only of powers of p and powers of
a; if and only if v; € {0,1} for j=0,...,n— 1, since ap = 1. But
since moreover we assume that the condition vy + -+ v, =
Jo — 1 is satisfied, n = jo — 1 and v; = 1 for all j. Consequently, there
exists exactly one summand of [A, (x)]; _; consisting only of powers
of p and a;. It is given by

p—(io—l)loali()*1p1+2+-~+j0—2 — a€°*1p00—2)(io—l)/z—(io—l)fo7
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which we will abbreviate by a’f’*lpm(z‘]). Then
[Ako (X)}j071 = a/i()*]pm(ﬁ()) + RI(O (pa agy .- 7ajo—l)a

where Ry, is a polynomial. As a polynomial in a; it is of degree
less than jo — 1. From the fact that ay,...,a;_; are algebraically
independent over Q@ we get that [Ay(x)];  #0 for £o=0,...,

Jo— 1. ]

We will use the partial series )., cptj0+50xtf'(’+[(’ later system-
atically. (Cf. Section 6.)

We now give the representation of the general solution ¢(x) of
(Ly), if a(x) satisfies (1) and a(x) = p* modx with 0 < ko < jo.

Theorem 10. In this case Ay, (x) # 0, and the general solution p(x) of
(Lp) is given by

‘P( ) [Ako ]0 Z Ptio+ko XUO-H%

>0

where Y -0 Prio+k X" is arbitrary. The coefficients p, of ¢(x)
with n = komodjo are the prescribed complex numbers @k, for
t>0.

Proof: Let a(x) := p%a(x), then a(x) = 1modx. According to
Lemma 3, the series ¢(x) is a solution of (L) if and only if
©(x) = x*@(x) where @(x) € C[x] is a solution of

p(px) = a(x)p(x). (Ly,a)

Hence ¢y = - -+ = ¢y,—1 = 0, i.e. ord ¢(x) > ko, and ¢, 4, = @, for
n>0. In Theorem 5 the general solution ¢(x) =" ., px" of
(Lp,a) was given as -

Jo—1 n—1 -1 ‘
H jO Z @tjoxtjoa
(=

n=0 t>0

where > @on’fo is arbitrary. Consequently,

Jo 1 n—1 -1
[Z H P ko p X)] Jo Z Sof.f0+koxtjo+k0

n=0 (=0 t>0

which yields the asserted form. O
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As in the case of a(x) = 1 mod x we find for a(x) = p* mod x, for

each solution o(x) of (L) and for each ¢y € {0,..., jo — 1} that

E ‘plj0+fo+koxtjo+€0+k0 =

>0
1 Jo—1 n—1
< Z p—n(€o+ko) H a(p@c)) <p(x) (4a lo, kO)

Jo \=o =0

Since there exist solutions of (L;) with p(x) = x* + .., we find that
either

jo—1 n—1
> o TLatp) =0 ©)
n=0 (=0

or

Jo—1 n—1
ord(z prnttoto) Hawx)) — o + o
n=0

=0

for some ty > 0. In the latter case we get for the general solution

Jo—1 n—1 -1
(p(x) = [Z pin(ZOJrkO) H a<p[x)] Jo Z Satj()JrfoJrkoxleJrgOJrkO?

n=0 /=0 >0

(27 607 kO)
where Y-, @rio+ty kX000 s arbitrary.

Remark 11. Let 0 < ¢y < jo and let a(x) be a solution of (1) with
a(x) = p* mod x. The series a(x) satisfies (6) if and only if for all
solutions @(x) = Y, - pax" of (Ly)

Crig+lo+ky = 0 t>0.

Proof: If (6) is satisfied, then from (4,0, ko) it follows that
Ghjo+to+ky, = 0 for all #>0. If (6) is not satisfied, then for all
©(x) # 0 it follows from (4, ¢y, ko) that

E Drio-+lo-+ho xtjo+fo+ko ?g 0.

>0

O

There is still another way to describe the general solution of (Lj).
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Theorem 12. If a(x) satisfies (1), then the general solution of (Ly) is
given by

P(x) = — 'y(p"X)

=5 o alpx)
for an arbitrary series y(x) € (C[[x]].

We notice that the right hand side in this expression for I'(x) will
also appear in (7) (as left hand side), which is the necessary and
sufficient condition for (L) to have a solution.

Proof: The series I'(x) satisfies (L) since by an application of (1) we
have

. = v(pk“ )
(p) = =0 oal(ptlx )
=3 v(p"+1 ) (%)

k+1

+ ]
=0 L= a(ﬁVX) ( 21 a(p'x))a(x)

R RC) VX N\ _oorie.
“(a(x) ZH w)) )

If ap = pko, then the general solution of (L) is given in Theorem 10
as

Jo—1 k—1 -1
[Z pHe H alp X)] Jo Z sOff'oJrkoxth+ko'
=0

>0

In order to prove that the general solution can also be expressed in
the form I'(x), we prove that for any choice of the coefficients I';j .,
for + > 0 we can find a series y(x) € C[x] such that

jo—1 -1
Z [Z pfkko H “ p * ] ]O Z FU()+k()xtjo+k0 =
k=0 H] 0d ( >0

= T (%)

n>0



On a Linear Functional Equation for Formal Power Series 97

Since a(x) satisfies (1) we have

(')
[Toa(p'x)
Jo—1 )
(69 T ato =0 (a4 PO aw ) =
j=k+1 n>1
= (S ) (4 P ) =
n>0 n>1
_a{;> 1 kZ’Yn knxn+z<27 pkrP a07 an_hp)>xn7
n>0 n>0
Wlth umversal polynomials Pﬁlk) (ag,...,an,p). Moreover,
ap™! prolo=1-k) "Hence
jo—1
] (p x)
=0 (p/x)

_ Z (,ynjoz:lpkn ko (jo—1— k

n>0

- Jo—1

+Z'erpkrp a()a"'aan—mp))xn =
Jo—1 .
- Z <7np ko Z " k()) + Qn(a07 sy Ay Y0y - - a’Yn—lap))xn7

n>0

with  suitable polynomials  Qy(ao, ... a5, %0,---,V-1,p). If
n = ky mod jy, then

Jo—1

> (") =,

k=0
When comparing the coefficients in (%) we get for n = ko mod j
jO’an_kO + Qn(aO> <o Apy 0, - - - 77n—lvp) = Fﬂv
which allows to determine 7, in a unique way. O
Another proof of this theorem will be presented in Section 5, and

an even stronger result will be proved in Theorem 31.
In the last part of this section we deal with the linear equation (L).
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Lemma 13. If ¢(x) is a solution of (L), then

n—1

SIRAUE)
o) = Tt (0 + 7) n>0
=0 kz(:) (p'x)

If moreover (1) is satisfied, then also
Jo—1
b(p ) )
STl oalpx)

holds.

Proof: For n = 0 the formula is true. Let n > 0 and assume that the
formula holds for n. Then (p""!x) equals

e(p"x) = a(p"x)p(p"x) + b(p"x) =

=a(p"x n_la x X "—1M b(p"x) =
9 [Tt (03 (W))+ (o)

T atobo (o) 1 S b(p x) b(p'x)
“ e )<“0( )t Sl x>+H;_oa<m>>

L ( +Z p/x))

which finishes the first part of the proof. For n = j, we get that

o) = () = TLate'0 (it +Z D),

=0

n

k=0

s |l

If (1) is satisfied, then we get as an immediate consequence that (7) is
also satisfied. |

From (7) it is clear that
bx) &= b(phy)
a<x) ; 1—[]1;0 a(p/x) ’
whence
Jo—1 b(pkx)
=1 (p/x)



On a Linear Functional Equation for Formal Power Series 99

Lemma 14. Assume that ap = 1 and p(x) is a solution of (L). Then

i Jo—1n—1 b(p X)
p(x) = [Ao(x JOZSDUOXO ZHapr
>0 n=1 (=0 (p]x)
(8)
where Ay(x) is defined by (5).

Proof: Computing the sum of ¢ (p"x) for n from 0 to jo — 1 we obtain
as in the proof of Lemma 4 that

Jo—1
z 0(p"x) = jo > X"
>0
From Lemma 13 we deduce that
Jo—1 Jo—1n—1 n—1 fc
. b(p"x)
> et = 3 Latr (o0 + St ) =
=0 n=0 (=0 =0 (p'x)
Jjo—1n—1 n—1 b(p X)
0+ [at’ Z—
=1 (=0 =0 a(p'x)

Since ap =1 it is possible to find the reciprocal of Ay(x), whence
©(x) is of the given form. O

Theorem 15. If the series a(x) and b(x) satisfy (1), (7), and ay = 1,
then the general solution o(x) of (L) is given (similar to (8)) by

jo—1n—1 X
p(x) = [Ao(x (JOZ%"“ >_]1a sz b(p&x))

t>0 n=1 (=0
(&)

where Y,y x% € C[x] is arbitrary. Furthermore, @y, = @}, for
t>0.

Proof: Similarly as in the proof of Theorem 5 we compute ¢(px) as

% douio Jjo—1n—1 /+1 n—1 b(pk+] ) B
[Ao(p0)] ™ (o ™ = > T alp Z— =

=0 =1 (=0 =0 a(p'tlx)
= a(x)[Ao(x)]” (JOZ‘P* to mzlﬁa (p'x Z bx) >
=0 o n=1 1= H, ja(p'x)

(%)
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Now we want to evaluate the last term of this expression. Multiply-
ing each summand by a(x)/a(x) and replacing n by m — 1 yields

jo—1 n . (P x) _ Jo mfla [x m—1 b(pkx) _
2 Hew ZH a2 T

R a<pex><'"zl b(h) b(x))k
)

m=2 (=0
jo—1 m—1 m—1

e bl b()
;::2@:0 v )<kz_; ,l-{:oa(/)’x) a(x) "
T oo (S5t bl
+l=0 v )<kz—(;njl'(—oa( ) alx)

ST o (bR b))\ b _
> 10 (X v —aw ) ~ato -

:j()lm_la(pZX)CZ; b(pzc;x) 28>_

—alx b(x) b(x b(x)_

@z 6) et

:]071"1710 Ex m—1 b(pkx) b(x) _b(x):
m:lg v )<kOH]]‘€0a(pix) a(x)> a(x)

:jo_l’"*]a {x - b(pkx) —Jo_lmila x @_
2 11 (p )k:O Ty 2= L (p )a(x
_ bl _

a(x)
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Inserting this into (*) and using (5) we get

Pl(px) = a(x)[Ao(x)]

Jo—1m—1 -1 b(pkx) )
* o _ — |+
(Jo;%ﬂ, = 1%61 =0 (P’x)
Jo—1n—1 Jjo—1 m—1
va)| Y TTate0| (ZH o)
n=0 (= m=0 (=0

which equals a(x)p(x) + b(x). From Lemma 14 it follows now that
the coefficients ¢, for n = 0modj, are the prescribed complex
numbers cp;fo for t > 0. m

3. Cyclic Functional Equations

So far we gave necessary and sufficient conditions for (L) and (L) to
be solvable, and we described the sets of solutions of these equations.
By introducing the formal logarithm

n—1
In(1 +x) = Z(_I)Tx"
n>1

we can describe which coefficients of a(x) and b(x) can be chosen
arbitrarily, and how the other coefficients depend on the previous ones.

Proposition 16. The series a(x) satisfies (1) if and only if

a<x>=fexp( > '7) e, 9)

n#0modjy

where &0 = 1. This is equivalent to

a(x)zﬁ(l—i— Z anx" + Z P,,(a)x”),

n#0modjo n=Omody

where a, are arbitrary elements in C for n % 0mod jy and
Pu(@) = Palan|m < n, m # 0modjo)
are suitable universal polynomials in the coefficients a,,.

We notice that (1) is nothing else but the multiplicatively written
cyclic equation for a(x) in C[x].
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Proof: First assume that ap = 1. Let y(x) :=In(a(x)) = >~ 7.x",
then each ~, is a polynomial in the coefficients ay, ..., a,. The series
a(x) satisfies (1) if and only if y(x) satisfies

Y(x) +y(px) + -+ (%) = 0.

Hence,
Jo—1 Jo—1 Jo—1

0= 7(p'x) =D o —Z%x”Zp‘"—Jo >
=0 (=0 n>1 n>1 n>1

n=0mod jg

which is equivalent to 7, = 0 for n = O modj,. Consequently (9) is
proved for ag = 1 with £ = 1.
In order to prove the second part assume again that £ = 1. If

ool 3 )

n#0mod jo
then

a(x) =1+ Y (b by )=

n>l

=1+ Z (7n+Qn(7m ’m<n))xn+ Z Qn(7m|m<”)xn
n#0modjy Egiédi()
where Q, is a polynomial in -, for m < n and m # Omodj,. For
n # 0modjy let a, := v, + Qu(Ym |m < n). Then
Tn = Qn — Qn(’)/m |m <n,m# OmOdjO)a
whence
”Yn:an_Rn(am ]m<n,m§éOmodjo) (10)
for a suitable polynomial R,. Finally, for n = O modj, let a, be the
polynomial
On(Ym | m < n,m % 0modjj) =
= Qu(am — Ru(ar | k < m,k Z 0modjjy) |m < n,m # 0mod )
which can also be expressed as a polynomial in a,,, whence
ay, = Py(ay, | m < n,m % 0modjj). (11)
So we end up with

x)=1+ Z anx"—i—z w(am | m < nym # 0modjj)x"

>
n ?é 0 mOdJO n:[)nm(idjo
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Conversely, take any sequence (an)”;i_Omod j, and define -y, for n e
0 mod jy by (10). For n = O0mod let a,, be given by (11). Then

a(x) :=1+Zanx":exp< 3 %xn)

n>1 n#0modjj

consequently it is of the form (9). If ay # 1, then ay = £, a complex
root of 1, and a(x) = &a(x), where a(x) = 1 mod x satisfies (1). Hence
a(x) is of the asserted form and the proof is finished. O

Remark 17. A different proof of Proposition 16 could be obtained by
differentiating (1) (for a(x) = 1 mod x) formally with respect to x and
dividing by a(x) - - - a(p~'x) = 1, which gives

Jo—1 . fli_a (pL’x) Jo—1 .y dz(zj(x)
= =0 or pa(px)=0 for a(x)=-2.
= alp'x) ; a(x)

Solving this functional equation for a(x) and going back to a(x) by
solving the formal differential equation

da(x)
) _ a(wa),

we find Proposition 16.
From Proposition 16 we derive still another representation of the
general solution of (Lj).

Theorem 18. If (9) is satisfied with & = 1, then the solutions of (L)
are of the form

o =ep| 3 o | S
el T =0
n mod o

where ~(x) =1In(a(x)) = > ,o VX" and (hj,)~, is an arbitrary
sequence in C. - -

Proof: The series ¢(x) =14 ., ¢,x" is a solution of (L) if and
only if ¥ (x) = In(¢(x)) is a solution of

P(px) = y(x) + (),
where y(x) = In(a(x)). Introducing coefficients 1), of 1) and ~, of ~

yields
Zd}npnxn = Z’Ynxn + anxna

n>1 n>1 n>1
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or equivalently
Ua(p" = 1) =7,  Vn>1

If n # 0 mod jy, then v, is uniquely determined as 1, = 7, /(p" — 1).
The coefficients 9, can be chosen arbitrarily in C. Hence

@(X)Zexp< > D >=

n#0mod jy t>1

:exp< Z p" ><1+Zh,]0 )
n#0 mod jo >1

Since (1, ),~ is an arbitrary sequence in C, also h;;, for > 1 can be
chosen arbitrarily in C. Finally, the general solution ¢(x) with ¢y not
necessarily equal to 1 is given by

p(x) = exr>< >

n#0mod jo Pt

) thjo U()

t>0

]
Remark 19. If a(x) satisfies (9) with £ = 1 and b(x) satisfies (7), then
by = 0 and b, can be expressed as
by, = S, (p, (an)nzl’bm | m < tjg,m #Z 0modjy), r>1
where Sy, is a polynomial.

Proof: Since ap =1, the reciprocal of H a(p/x) starts with the
constant term 1 for £ > 0, thus from (7) it follows immediately that
by = 0.

Indicating the reciprocal of H a(px) by 1+ ., aPx", then
from (7) we get -

b(p*x) (1 + Zafj‘)x”) =

n>1

(Z bnpk”x") (1 + Ea;“x") =

n>1 n>1

—

Jo—

0=

M

k

>
Il
—ao

jo—

k=

nzb <+Za )

n>1

jo—1
+]OZ Z bup""x" + Zb,j(]x’jo (1 + Za,(f)x”).

k=1 w1 >1 n>1
n#0mod jo
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Hence, the coefficient of x% for ¢t > 1 satisfies
Jobyjy + Rijy (p; (@n) 1, bm | m < tjo) = 0,
where R;;; is a suitable polynomial. Consequently

1 .
by, = —j—OR,jO(p, (@n)ps1sbm | m < o).

By induction we prove that

by, = Sy, (p, (an)nzl,bm | m < tjo, m Z O modjo),
with a suitable polynomial Sy;,. O

Now we will characterize the solutions b(x) of (7) if a(x) satisfies
(1) and ap = 1, i.e. those b(x) for which (L) has a solution.

Proposition 20. If a(x) satisfies (9) with & = 1, then (L) has a solution
ifand only if b(x) is of the form

Z X" + Z ((a, ,>1,¢m|m<n m Z 0 modjy)x",

n>1 n>1
n#0modjg n=0mod,g

(12)
for arbitrary 1, € C (n £ 0modjy) and for suitable polynomials M,
(n = O0mod jj).

Proof: First assume that (L) has a solution ¢(x). We may assume
@o = 1 and ¢, = 0 for t > 1, since it is possible to add a suitable
solution of (L) (c.f. Theorem 18) in order to determine a solution
with these properties. Hence

x) =1+ Z Opx"
n#z0mod jy

As a consequence of (L) we derive

- <1+ > cp,m"x") - <1+ > cp,,x") <1—I—Zanx"> —

nZ0modjy nZ0modjy n>1

= Z [(pn_1)<P11+Ln((ar)r21>90m|m<n>m7_é0m0dj0)]xn+
nz0mod jy

+ Z ((@r),>15¢m|m<n,mz0modjo)x",

n>1
n=0mod;

where L, are suitable polynomials.



106 H. Fripertinger and L. Reich

For n # 0 modj, denote
(0" = 1)pn + Lu((ar),51, m | m < n,m # Omod jo)
by 1,. Hence for n Z 0 mod jj
~ Yn = La((ar),515 m | m < n,m # Omodjo)

n — pn 1 =
= K (p, (ar)rzpwm om | m < n,m#Z 0modjo),

where K, is a suitable polynomial. By induction we get

on = Ku(p, (@)=, thm | m < n,m # Omod jo) (13)

with suitable polynomials K. For n = 0mod, replace ,, in L, by
(13). Then b(x) is of the form (12).

Conversely, assume that (¥),20meqj, 1S @ sequence in C, and let
b(x) be given by (12). Then there exists a unique sequence (),
such that ¢, =0 for n=0modj, and ¢, given by (13) for
n #Z 0modjy. According to the computation above, b(x) satisfies
b(x) = p(px) — a(x)@(x) for p(x) =1+ >, ~0meaj, Pn¥"- Hence, ¢
is a solution of (L). O

Assume that a(x) satisfies (9) with £ = 1. From the last lemma we
deduce that (L) can be solved if b(x) is of the form

= Y b+ D> My((ar),ay, b | m < n,m # 0mod jo)

n>1 n>1
nZ0mod jo n=0mod

with arbitrary (by),-omedj, in C. Determining ¢, for n % 0modjo
by (13) (where we have to replace v, by b,) and setting
@o=1 and ¢ =0 for s > 1, we compute a particular solu-
tion @(x) = > -, @ax" of (L). All the other solutions of (L) can be
found by adding series as given in Theorem 18.

Another characterization of those b(x) € C[x] for which (L) has a
solution is given in Remark 32.

4. Explicit Formulas for the Coefficients of the Solutions

Our next approach allows to compute (more or less) explicitly the
coefficients of the solutions ¢ of (L) or (L) respectively. The series ¢
is a solution of (L) if and only if

> o = (Z aripn- r)x

n>0 n>0
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This is equivalent to
on(p" —ap) = Zarcpn,r, Vn > 0. (14)
r=1
If a{;’ = 1, then ay is of the form p" for suitable n € Z. Let ky be the
minimum of {n € Ny | p" = ap}, and let K denote the set

K = {ko + njo ‘ ne No}.

The proof of the next lemma, which uses (14) and induction, is left
to the reader.

Lemma 21. If ¢ is a solution of (L;), then p, = 0 for 0 < n < ko. If
© # 0 is a solution of (L), then min{k € Ny | por # 0} = ko + rjo
for some r € Nj.

As a consequence of Lemma 3 we derive that ¢ is a solution of
(L) if and only if x7 ¢ is a solution of (L) for r € Ng. If ¢ # 0 is a
solution of (Lj), then there exists an index k € Ny such that ¢; # 0.
From the last lemma we deduce that min{k € Ny | pp # 0} =
ko + rjo for a suitable r € Ny. Without loss of generality we assume
that » = 0.

In combinatorics an ordered partition of the 1nteger n >0 is an
ordered tuple (ry, ..., r¢) of integers r; > 0 such that Zl , i = n. For
n = 0 there exists only one ordered partition, the empty tuple (). In the
context of the present article we are rather interested in the finite
sequences 0 = (0, ...,0¢),0; = Z; | 1j, corresponding to an ordered
partition (ry,...,7). Let pI 1nd1cate the set of all those sequences o
corresponding to ordered partition of n such that o; Z 0 modjj for all
i=1,...,0. Then ¥y = {()}, and for n > 0 we have

En:{(ala"'agﬂ)|O'i€N7O-i$é0mOdj07 lgléga
0j < Ojt1, 1<j<d, Ug:n}.

The length of 0 = (074, ...,0¢) € X, is £, which will also be indicated
as /(o). Moreover, by a(o) we denote the product

V4
= H Aoi—0i 15
i=1

where a, are the coefficients of the series a(x), and where we assume
that oy = 0. Finally N (o) stands for



108 H. Fripertinger and L. Reich

Theorem 22. 1. If ¢ is a non-trivial solution of (Ly), then the
coefficients of ¢ satisfy

m o)
e Y O (15)

Jo
(o)
=0 TEL kg1 ay N(U)

®On =

and for all s > 0

Zoja, > _ale) (16)

Lo
Uezsjo—r a()( >N(O-)

holds.

2. If (16) is satisfied for all s > 0, then each series @ with co-
efficients given by (15) and any choice of the coefficients (@i +i,) ;>0
is a solution of (Ly). -

Proof: 1. Let p(x) = ) -, @nX" be a non-trivial solution of (L;). In
Lemma 21 it was shown that ¢, = 0 for 0 < n < k¢. This coincides
with (15), since in this case the first sum is empty. If n is of the form
ko + sjo for s € Ny, then the right hand side of (15) is just @y, 1,
since Xy_gy—go =0 for 0<tr<s, and X, 44 =20 ={()}
Finally, for n > ky and n ¢ K we will use induction to prove the
theorem. Setting n=ko+ 1 in (14) we get ¢, 1(p"" —ag) =
ayk,, hence

a1Pk, a(a)
Pro+1 = —F7~ — Pk TR e—
o ap(p —1) ’ ;1 ag(U)N(U)

Letn > ko + 1, n € K, and assume that j; is given by (15) for j < n.
From (14) we deduce

1 nfko
n — arPn—yr =
T (R 1) ; ’
=
1 ~— 0 a(o)
= Tk 1\ ar Phko+tjo o)
ao(pn fo — 1) ; ; o (Tezr;—k()—rf( af)(U)N(O-)

0
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[%] n—ko—tjo
_ N _ S ar a(lo)
= ; Pho-+jo ; “O(P”'“’—l)aez,;o,jo af)(g)N(o)
5]
= Z PLho+tjo Z #.
=0

TE€Su—ty—iy Q0 N(U)

For doing these computations we used that if n ¢ K, then the two
values [" ]10 ko] and ["joko] coincide. Moreover

n—ko—1tjo
Y- ko—tjo — U { 017‘ -y OU(o), 1 — ko — UO) | (OS En*ko*fj()*r}‘
If & denotes a sequence G = (071, ..., 0¢q), 1 — ko — tjo) € Ln—ky—go»
where o€ X, 44— for some re{l,....n—ky—tjpo}, then

0(5) = (o) + 1, a(6) = a(c)a, and N(c) = N(o)(p" %=t — 1) =
N(o)(p"* —1)

So far we proved that ¢, is of the form (15). We still have to show
that (16) holds for all s > 0. For s = 0 this is clear. Assume that
s > 0, then by induction we get

ko+sjo
ko+Sj —_ 0 — —
Protsin (P —a0) =0 =" arrysjor =
r=1
. ["()'H:f()—’—ko]
ko+sjo Jo a ( U)
D LD DI D =
r=1 =0 TE€ Sy +sig—r—kg—tig 0 N(U)
S lj()
= E Phko+tjo E ar E
O-GZ(A tjo—r 0 )
8fo a( U)
P ILED Dl et
r=1 o€y, ,a() N(U)
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(s=1)jo

+ Z Pko-+jo Z ar Z

U
/
UGE (s=)jp aO N )

sjo alo
NI
r=1 062%7, a() N(U)
From ¢y, # 0 it follows that (16) holds also for s.

2. Assume that (,+4, ), is an arbitrary sequence in C, and let ¢,
be given by (15) for all n > 0. In order to prove that ¢ satisfies (L) if
(16) is satisfied, we prove that (14) holds. If n ¢ K, then ¢, is
computed by (15) which was in the first part of this proof deduced
from

Z arPn—r-

Hence (14) is satisfied. If n € K, then n = ko + sjo for a suitable
s > 0. In this situation (14) reduces to

P —aop 7

ko+sjo

0= § ArPro+sjo—r-
r=1

In the first part of this proof this sum was computed as

s—1 (s=t)jo
a(o)
Pho+tjo Z ar W
t=0 r=1 aeE(x,%,, ao (0)
which equals 0, since (16) is satisfied. I

In order to deal with the equation (L) we introduce some further
notation: For integers m and j let

im,j = {JEE,,,]J,H%K, 1SISE(U)},

and finally for o € %, let

4(o) E(rr)

_ oi+j _ oi+j—k
S ICERSE ) | (e

i=1 i=1
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The series ¢ is a solution of (L) if and only if

Do =) (Z arpu—y + bn)x

n>0 n>0

This is equivalent to

2 (0" — ap) Za,gon ++ by, Vn > 0. (17)

Theorem 23. 1. If @ is a solution of (L), then the coefficients of ¢
satisfy
2]
alo)

©n = Z Pho+1jo Z W‘i‘

=0 TE€EEn—ky—ijy a, N( )
a(o
_ 18
+Z —aerZN',a)’ (18)
oETjj

jéK

and for all n € K (assume n = ko + Sjo)

s—1 (s=t)jo

D Gt Yy ﬂJr

(o
t=0 r=1 O'EE(: Nig—r ao( )N(O')

+ Z Z >N (19)

=0 —aos oeY

jZK n—j—ryj
holds.
2. If there exist non-trivial solutions Of (Lh) and if
n—j

+b,=0 20
RUSS S I =

/€K n—j—ryj

holds for all n € K, then each choice of (¢r,+4y),>q in C yields via
(18) a solution of (L).

Proof: 1. Let ¢ be a solution of (L). For n = ky + sjp € K the co-
efficient ¢, is of the form (18) since the first sum reduces to ¢,
as shown in the proof of Theorem 22, and the second sum yields 0.
The last fact is true since for n € K by definition the set ¥,_;; = ()
for all j € {0,...,n}. Now we will apply induction to prove (18) for
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all n. If ky = 0, then (18) holds for n = 0. If kg # 0, then ag # 1,
and from (17) we deduce that (1 — ag) = by which yields

by
/)O —do

in accordance with (18). Now assume that n ¢ K and that ¢; is given
by (18) for j < n. From (17) we deduce

$o =

[
0 a(U)

—0 TE—r—ky—tjo ap
a(o)
— b, =
+ Z — ay Z N(/’ 0) '
€Y rjj
/QK n—r—j,
(=] (o)
n 0 al\o
= Z a, Z Phko-+tjo Z W *
r=1 =0 €L n—r—ky—tjo o N(U)
+iar§f 2 > S+
=1 Jj=0 p] —do Uein—r—j\/ N(]7 U>

igK

In order to determine ¢,, we have to divide this formula by p" — aq.
With the first summand of the last expression we dealt already in the
proof of Theorem 22, so we only have to compute

E Z a2 fvao('i—)*b”

/eZK O€Xn—rjj

Changing the order of summation yields

-« = a(o) b,
PSS e e
JEK o

o 1 bj a(a
B =0 pf—ao ZN(] O').
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Similar as in the proof of Theorem 22 we used the fact that for j < n

n—j
in,”' = U{(Ul, ce oy Og), I —J) | o c Snfrfj,j}-
r=1

Let 6 = (01,...,0¢0),n —J) € ¥,—j; such that o € &,_,_;; for some
ref{l,...,n—j}, then N(j,6) = N(j,0)(p" — ap). Combining this
result with the result from Theorem 22 proves (18).

Let n = ky + sjo for s € Ny be an element of K, then from (17) we
deduce that

n
Wn(ﬂn - aO) =0= Zar@nfr + bn

r=1

Expressing ¢, by (18) and changing the sequence of summation
yields (19).

2. If there exist non-trivial solutions of (L), then (16) is satisfied,
hence (19) reduces for n € K to (20). If this equation is satisfied for
all n € K, then a particular solution of (L) is given by 1(x) with
coefficients 4, = 0 for t > 0 and

b a(o)
U= a2 W)
ek i

for n ¢ K. It remains to show that ), satisfies (17). If n & K, we
computed in 1. that

Z arp—r + by = (Pn - aO)wn-
r=1
If n € K, then (20) implies that
n
Zarwnfr +b,=0= (Pn - aO)wn-
r=1

Hence v is a particular solution of (L). All solutions of (L), are of the
form (x) + ¢(x), where o(x) is a solution of (L), described in
Theorem 22. |
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5. Representation of the Solutions by Means
of Basic Linear Algebra

In the next two approaches some methods of linear algebra will be
useful. We describe the necessary and sufficient conditions for the exis-
tence of non-trivial solutions of (L;) and of solutions of (L) as conditions
on the rank of certain matrices. Moreover, we present another proof
for the form of the general solution of (L) given in Theorem 12.
Replacing in the homogeneous linear functional equation (Lj)
the variable x by px, p%x, ..., p* 'x and writing ¢,(x) for ¢(p"x)

for n=0,...,jo— 1, we get the system of homogeneous linear
equations
—a(x)po(x) + @1(x) =0
—a(px)p1(x) + p2(x) =0
—a(p7*x) -2 (%) + pjp-1(x) =0
—a(p*~'x)pjp1 (%) + @o(x) = 0
which can be written in matrix form as
®o(x) 0
aw| =1
Pjo—1 (x) 0
with
—a(x) 1 0 0
0 —a(px) 1 0
A(x) = : - " :
0 o oo —a(p2x) 1
1 0 . 0 —a(p~1x)

If (L) has non-trivial solutions, then this system has non-trivial
solutions, whence the determinant of the coefficient matrix, which we
will call A(x), vanishes. Hence detA(x) = 0.

Developing this determinant with respect to the first column, we
immediately get that (1) is satisfied, and that A(x) is of rank jo — 1.
Assuming that (1) is satisfied, we can apply a method described in [6]
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pages 267-271, originating from [9] and [10], which expresses the
general solution of this system in the form

®o(x) v(x)
©1(x) ¥(px)
: = B(x) f
Djo—2(X) V()
©jp—1(x) (" 1x)

with a suitable matrix B(x) and an arbitrary series v(x) € C[x]. In
general the expressions obtained for ¢(p*x) in this way are
. . . . . k
contradictory. However, when introducing matrices My = (m3)o<i j<io
given by
mk 1 if i+ k =jmodjy
y 0 otherwise,

and if B(x) satisfies B(x) = MB(x)M;"! for all k=0,...,jo— 1,
then they are not. In this situation B(x) is called a compatible
matrix.

In order to determine B(x), the main task is to find a matrix B;(x)
which is compatible and which satisfies

A(x)B (x)A(x) + A(x) = 0. (21)

Then we put B(x) := By(x)A(x) + I, where I is the unit matrix. First
we determine matrices P(x), Q(x), and D(x) such that D(x) is a
diagonal matrix of the same rank as A(x) and such that
A(x) = P(x)D(x)Q(x). In the present situation we have

1 0 0 0
0 1 0 0
P(x) = :
0 0 1 0
—1 -1 -1 1
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1 0 0 0
0 1 0 0
D(x) =
00 1 0
0 0 0 O
and
—a(x) 1 0 0
0 —a(px) 1 0
Q(x) = "

0 0 —a(p%x) 1
0 0 0 1

Then we define a matrix By (x) := —Q~ ' (x)D(x)P~!(x) which satisfies
(21). The inverse matrices are given by

1 0 0 0
0 1 0 0
P_l(x) =
0 0 1 0
1 1 1
a(x)  a(x)a(px) Hfi ;2 a(pix)
and
—1 —1 ‘ —1 . 1
o) alalor) Hji;z a(pix) Hm;za(ﬂ’ )
0 —1 1 1
a(px) H’/‘il a(pix) Hﬁl a(pix)
0 '(x) =
0 0 —1 1
a(po—2x) a(po2x)
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Hence By(x) is of the form

1 1 e o —L 0
@ A 1% ato
i i
O @ T °
Bo(x) =
1
0 0 a0
0 0 e 0 0
Finally, let
1 Jo—1
By(x) :==—Y M, 'Bo(p"x)M,
Jo =3

then B;(x) is compatible and satisfies also (21). Consequently,

1 _L e —
alx) TT7, ato
a(x) a(x)
alx — e T
1 ( ) a(x) Hzo 2 alpix)

HJO 2 ( ) H;Oo(z‘;(/)’x) H;zoza(ﬂx)
e 1_[71

is also compatible and can be used to determine

14~ v(p x) (22)

p(x) = polx) = o 25 T4 alpx)

a solution of (Lj,).
Summarizing, we proved

Theorem 24. A necessary and sufficient condition for the existence of
non-trivial solutions of (L) is given by (1), and the general solution
of (L) can be determined by (22), where y(x) is an arbitrary series in
Cl«].

This way we also gave a second proof for Theorem 12. We only
have to replace 7(x) by v(x)/a(x) and multiply ¢(x) by jo in order to
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get I'(x) from Theorem 12. An even stronger result will be proved in
Theorem 31.
Turning our attention to (L), we assume that (1) is satisfied. If we

replace in (L) the variable x by px, p’x, ..., p°~'x, we obtain a system
of j, inhomogeneous linear equations
©o(x) b(x)
A(x) : = : =:b(x)
Pjo—1(x) b(p"'x)

with A(x) introduced at the beginning of Section 5.

A necessary and sufficient condition for the existence of solutions
(po(x),...,pj,—1(x)) is that the rank of A(x) and the rank of the
enlarged matrix (A(x),b(x)) coincide. The matrix P~!'(x)A(x) is an
upper triangular matrix, where the last row consists of zeroes only.
Since

b(x)
b(px)

b 2x)
ZJO 1 P x)

=0 a(P'%)

we derive again that (7) is a necessary and sufficient condition for the
existence of solutions of (L).

6. Representation of the Solutions by Means
of Determinants

The methods applied in this part lead to a representation of the
general solutions of (L) and (L) in terms of some determinants. Also
the necessary and sufficient conditions for the existence of non-zero
solutions of (L) or the existence of a solution of (L) can be for-
mulated by means of determinants. We will compare these condi-
tions with the form we found before. (Cf. Section 2 and Section 5.)
Moreover, in Theorem 31 we present a generalization of Theorem 12
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and Theorem 24. Finally, in Remark 32 another characterization of
those b(x) € C[x] is given, for which (L) has a solution.
For 0 < k < jy put

Cr)® = {rm ekl = Y wrl,

n=k mod jo

then clearly (C[x])* is a subspace of the C-vector space C[x], and

is a direct decomposition of C[x]. Hence each series y(x) € C[x] can
uniquely be decomposed into

) => @), AW e k).

The series 7(x) belongs to ((C[[x]])(k) if and only if v(px) = pfy(x).
Furthermore, if v(x) € (C[x])", then ~(p‘x) = p%*~(x).

Obviously the following lemma holds.
Lemma 25. 1. If f(x) € (C[x])"” and g(x) € (C[x])Y, then (fg)(x) €
((C[[x]])(k) for k=1i+j mod jy and k € {0, ..., jo— 1}.

2. If f(x) € ((E[[x]])(i), glx) € (C[[x]])(i) and (fg)(x) is a series of
order 0, then i = j = 0.

Using this notation (L) is equivalent to

$ ot = (Z“ w) (Z )

=0
since p®) (px) = p*®)(x). This yields the system of linear equations

a<1)(x)¢(/o—l)(x)

+ ¢ (x)
A a®(x)lo N (x)

eV (x)

ao= (x)M (x)
a® () (x)

Q
=
=
=
=
=
kI
+ +

J’_..
+ -

a» D)) 4+ a®Dx)eME) 44+ aO@)plD(x) = polpl-D(x)
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for the unknown functions o®) (x) € (C[x])*). It can be written as a
homogeneous system of linear equations

0 (x)
A(x) : =0 (23)
so(/‘O_l)(x)
with coefficient matrix

a9x) -1 aoV(x) ... a(x)

aV) (x aOx)—p ... a?(x
A(x) = .( ) ( .) o _( ) . (24)

a(/’o_.l)(_x) a(/.()_'z) (_x) .. a(o) (x) ‘_ p/()_l

It is convenient to write A(x) also in the form A(x) = (c)o<; ;)
where -

ay = a(k)(x) _ piéip k =i —jmodjj

and ¢; is the Kronecker é-function. Then a necessary condition for
the existence of non-trivial solutions of (L;) is det A(x) = 0.

Proposition 26. If (L;) has non-trivial solutions, then the rank of the
matrix A(x) is equal to jo — 1.

Proof: Since det A(x) =0, the rank of A(x) is smaller than jy.
Moreover, we know that the coefficient a satisfies a{;) = 1, thus there
exists exactly one integer kg € {0,...,jo — 1} such that ay = ph.
Deleting the (ko + 1)-th row and (ko + 1)-th column of A(x), we get
the matrix A’(x) given by

0)( ) — a(infl)(x) a(in*koﬂ)(x a(in*kO*l)(x) a(l)(x)
al(x ) ad%x)—p ... alo Rt (x) alo=k) (x) a?(x)
a(ko—'n Y kD) a0 ol Dy gy
a%*) (x) a%) (x) a?(x) a®(x) — phtt . a®ot2)(x)
a(i”"]) (x) a(""’.z)(x) aUO’/;“)(x) a(""’k""z) (x) ' a® (x) - ph!
Then
Jo—1
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where Sj, is the group of all permutations of {0, 1,...,jo — 1}, which
is isomorphic to the symmetric group of degree jy. According to
Lemma 25 each summand of detA’(x) belongs to (C[x])® for

Jo—1

k= (j—n(j)) = 0mod,,

J#ko
and the only summand which could be of order O is the summand for
7 = id. This summand indeed yields the non-zero constant term

(0= 1)+ (a0 = 1) (a = p1) o (ag = ).

Hence, detA’(x) # 0 and A’(x) is of rank jo — 1. Since A’(x) is a
submatrix of A(x), the rank of A(x) is at least jo — 1, actually it is
Jo— 1L O

Solving (23) is equivalent to solving the inhomogeneous system of
linear equations

) —a7 (2)p ) ()
(ko—1) _ (io D (x) o tko)
Y KON alo=1 (x)p*) (x)
A (X) go(k““)(x) - (x) (ko) ( ) (25)
SDUO_I)(X) _a<]0_k0_1)(x)90(k0>(x)
For each choice of ¢*)(x) in C[x] there exists exactly one solution
(Cos -+ s Cho—15 Cho15 - - - s Go—1) Of (25). In general these ¢; are Laurent
series.
Lemma 27. If o) (x) € (C[x])*, then each Ck is aformal power
series belonging to (C [[x]]) &) for ke A{0,.. —1,kg+1,...,
Jo—1}.
Proof: Applying Cramer’s rule (; can be computed as
/
= _ detAy(®) (26)
detA’(x) ’

where A[k]( x) is constructed from A’(x) by replacing one column of

A’(x) by the right hand side of (25) in an obvious way. We already know
from the proof of Proposition 26 that ord detA’(x) =0, whence
1/detA’(x) is a formal power series, and detA’(x) € (C[x])'”), thus
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also 1/detA’(x) € (C[x])'”. This implies that all ¢; € C[x]. The com-
ponents al[j] ofA’[k]( x) fori,j€{0,....,ko— 1,ko+1,...,jo— 1} are
o, ifj £k
ol = —ali=k) (x)pko)(x),  if j=kand i > ko

y "
—al™o=k) (x)p®) (x), if j =k and i < ko,

hence
Jo—1 i
/!
detApy(x) = Z sgnwg S
'(ko‘).]:[)ko i7ko

In each summand there is exactly one term, actually the term a[kll ()

which does not belong to A’(x). Since this term belongs o
(([Z[[x]])(7r ®) it follows from Lemma 25 that [, l[.];](l.) belongs

to (C[x])"“ for i
Jo—1
= > (i—n@) +7 (k) =
ik, l{:gfl (k)

=S (= 7l@) — (5 (k) — k) + 7 (k) = kmod o

l%ko

Consequently detA’[k]( x) € (C[x])® and finally ¢ € (C[x])® which
implies that ¢; is of the form ) (x) for (x) € C[x]. ]

Summarizing, we obtain a representation of the general solution of
(L) by means of determinants.

Theorem 28. The homogeneous linear functional equation (Ly,) has a
non-trivial solution if and only if detA(x) = 0, where A(x) is given in
(24). In this case, the rank of A(x) equals jo — 1, and ag = p*° for
some ko € {0,...,jo — 1}. The matrix A'(x) constructed from A(x) by
deleting the ko-th row and column is of full rank. For arbitrary
e®)(x) € (C[x ]])( o) the umque solution of (25) given by (26) vields a

solution ¢(x) =) 0 0O (x) of (Ly).
Proof: If (L) has a non-trivial solution everything was shown in

Proposition 26 and Lemma 27. If detA(x) = 0, then there exists a
ko € {0,...,jo — 1} such that ay = p**. Assume in contrary that
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ay # p* for k € Z, then similarly as in the proof of Proposition 26

we get that
Jo—1

det A(x Z sgnm H Qir(i)

TES;,

belongs to (C[x])” and the only summand which could be of order 0
is the summand for 7 = id. This summand however yields the non-
zero constant term -

Jo—

[ 1@ -6

k=0
in contradiction to detA(x) =0. Hence, also in this situation
Proposition 26 and Lemma 27 can be applied and the proof is
finished. L

We now want to compare the necessary and sufficient condition (1)
for the existence of a non-trivial solution of (L;) with the necessary
and sufficient condition detA(x) =0 of Theorem 28. Using the
decomposition a(x) = S°) a® (x) with a® (x) € ()™, we get
from (1) the identity

Jo—1 Jo—1jo—
O—Hapx —1—H
=0

Jo—1

O e + ZPr(a(”(x), oy a" V@) () - 1,

1
kaa
k=0

where each P, isa polynomlal over Q(p). We know from Proposition 16
that for given a® € (C[x])® fork = 1,...,jo — 1 the equation
Jo—1

O (x)pe + ZP,(a(l)(x), L d ")) O X)) —1=0 (27)
r=0

has a unique solution a(®) (x) € (C[[x]])(o) with ¢ (x) = 1 mod x.
For each solution a(x) of (1) with a(x) = 1 modx and each p™ for
0 < m < jy, also p™a(x) is a solution of (1) with p"a(x) = p" mod x,
with the decomposition
Jjo—1
Fal) = 3 pa(x).
=0

For given a(V(x),...,al% " (x) we define for k =1,...,jo — 1
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Then, by our remark above, the equation

Jo—1

X0+ " p@m(x), . a )X —1=0

has a unique solution a®"(x) € (C[[x]])(o) with @@ (x) = 1 mod x.
Hence

ap(x) = m(joz_:a(k),m( )> = p"a 0 (x) +joz_fa(k)(x)

k=0 k=1

is a solution of (1) with a,(x) = p” mod x, and p"a®" (x) satisfies
(27). Also, ap(x) # ay(x) for n#m, 0 <n,m < jo. So we con-
structed jo different solutions of (27) in (C[x ]])(O)

Let us develop the expression detA(x) according to powers
of al®(x) with coefficients which are polynomials over Q(p) in
aW(x),...,a% "V (x). This way we get a monic polynomial of degree
Jjo. It has the j, different zeros «,, for 0 < m < j,, because for
a(x) = a,,(x) the equation (L) has non-trivial solutions. Hence we
get

Theorem 29 Let a(x) € Clx] denote a series of order 0 and

a(x) = S0 a® (x) with a® (x) € (C[x DY, IFA(x) is given by (24),
then
Jo—1jo—1
detA(x) = H a(pix) — 1 = I_IZ:;)”‘ak>
=0 k=0

which is an identity in C[x].

Now we come back to the inhomogeneous linear functional
equation (L), and we assume that (L;) has non-trivial solutions, i.e.
detA(x) = 0, where A(x) is given by (24). If we also decompose b(x)
in the form Y7 p®) (x) with b®(x) € (C[x])*), then (L) has a
solution if and only if the inhomogeneous system of linear equations

o) b0
A(x) = =: b(x) (28)
Vo= (x) hUo=1) (x)
has a solution with o® (x) € (C[x])* for k=0,...,jo — 1. This
system has a solution without any extra condition on *)(x) if and

only if the rank of A(x) coincides with the rank of the enlarged matrix
(A(x),b(x)). If Ayy(x) denotes the matrix derived from A(x) by
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deleting the (k + 1)-th column, then (28) has a solution without any
extra condition on ¢(*)(x) if and only if det (A (x), b(x)) = 0 for
k=0,...,j0— 1.

Theorem 30. Assume that detA(x) = 0 and that a(x) = p* mod x for
some ko €{0,...,jo— 1}. Then (L) has a solution if and only if
det (A ) (x), b(x)) = 0.

Proof. If (L) has a solution, then the assertion is obvious. Now we
assume that det(A(x),b(x)) = 0, which implies that b(x) is line-
arly dependent on the column vectors of A ,)(x). From the proof of
Proposition 26 we already know that A ) is a matrix of rank jo — 1
and that all the column vectors of A(x) are linear combinations of the
column vectors of A (x). Hence the rank of (A(x), b(x)) equals the
rank of A(x), which is jo — 1. Consequently (28) has a solution. Also
from the proof of Proposition 26 we know that the (ko + 1)-th row of
A(x), thus also of (A(x),b(x)), is linearly dependent on the other rows,
so that it can be omitted. Finally (28) can be rewritten in the form

e BOW \ ([ (e
A’(x) S0(/«)*1)(%) _ b(kofl)(x) N _a(fofl)(x)sp(ko)(x)
QO(k()Jrl)(x) b(ko+1)<x) —a(l)(x)cp(kO)(x) ’
0w ) st )\ avhe gt
(29)

where ©®)(x) can be chosen arbitrarily in (C[x])*” and A’'(x) is
defined in the proof of Proposition 26. Again we apply Cramer’s rule
in order to solve this system of equations. Similar to the proof
of Lemma 27 we derive that the components p*)(x) of the unique

solution of (29) belong to (C[x])* for k € {0,... ko — 1, ko+
1,...,jo — 1}, since the components b®)(x) — a*~%)(x) k) (x) of
the right hand side of (29) belong to (C[x])™*. O

From the representation of the general solution of (L;) under the
assumption (1) given in Theorem 12 or Theorem 24, it is easy to
obtain still another form, which is very close to (2) or (2’), but not
identical. Let us restrict to the case that a(x) =1+ ax+ ..., and
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consider the decomposition

Jo—1

) => A9

=0
with 49 (x) € ( [[ ]]) Then we easily find that

Jo—1 Jo—1jo—1 )

e
=0 H, —0 p/x =0 =0 [ [i—0a

ZJ/Z:(‘; Cg pu(/ﬂx)>

_ Jo 1; Jo—1 [ jo—1 pké @ .
(; (P’X))7 = (k:QHJkoa ) )

It follows from Theorem 12 that for each v (x) € (C[x])"”

<m2ﬁ>w ) (30)

is a solution of (L;). We claim

Z

) =

2

Theorem 31. If (1) holds, then the general solution of (L) is given by
(30) with v (x) € (C[x])".

Proof: By Theorem 5 we know that to each v (x) € (CIA) there
exists a series Y- @y ¥ such that

Jo—1 1 0 oo j()—lnfla /{x . [/0'
(;T&Oa(pfx))v (x) [ZH (p )] jo Y i

>0
(31)

Hence, it is easily seen that

(mZ o )( I apx) ), (32)
k=0 0d n=0 ¢=0

and that its reciprocal also belongs to (C[x])'”). If now Dm0 P X
given, which determines by (2') the general solution of (Lj), we
determine v (x) from (31), and consequently (30) can be any

solution of (Ly). O
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Similar representations like (30) hold in each case a(x) = pf+
ajx + - --, and again (cf. Theorem 9), if the coefficients ay, ...,
of a(x) are algebraically independent over @, then we get
simultaneously jj representations for the general solution of (L) in

the form
Jo—1 kel
( Z p) A0 (x)
=0 (P'x)

for £ =0,...,j0— 1.
If we denote

(S ) (S110)

by ®(x), then it follows from (32) that ®(px) = ®(x). This together
with (3) implies that

jo—1 jo—1
Jo 1 Jo 1

2T 02

— a —
=0 [1;—0 a(p/px) I alpx)
Moreover, it is easy to prove that

Jjo—1 ¢
O(x) = Ha k+/x

0 (=1 j=1

vm_

In Proposition 20 we already characterized those b(x) € C[x] for
which (L) has a solution. Using the decomposition of C[x] into
subspaces ((E[[x]])(k), the following gives another method for solving
the functional equation (7), i.e. of characterizing those series b(x), for
which (L) has a solution.

Remark 32. Assume that a(x) is a solution of (1) with
a(x) = 1 modx. Now we decompose C[x] in the form

Clx] = (Cl)” @ (@(@ﬂxﬂ><”>.

k=1
By ® = ¢, we denote the C-linear mapping
V() = () (x) == (px) — a(x)7(x)

from C[x] to C[x], associated with (L,). Clearly ¢(x) € Ker ® if
and only if ¢(x) is a solution of (L;). From Theorem 5 we know
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that
Jo—1n—1 -1 .
Kerq):jolzna ] Cl])©.
=0 /=0
=jolAo(x)] ' =:A(x)

Since, under our hypotheses, the C-linear mapping 7: C[x] — C[x]

V() = T(V)(x) = Ax)y(x)

is a vector space automorphism of C[x], we get the decomposition

Cll =AWl @A (@(@[{xﬂ)“‘)) )

k=1
= Ker ® ® A(x) (jéal(@[[x]])(k)). (33)
k=1

From this we see immediately that b(x) € Im(®) if and only if (L)
(written with a(x) and b(x)) has a solution in C[x]. Hence, in order to
characterize the solutions b(x) of (7), we describe Im(®). According
to (33), each y(x) € C[x] has a unique decomposition y(x) = ~o(x)+
~1(x) with 4o (x) € Ker(®) and 7, (x) € A(x)(@" (C[x]))). Hence
S()(x) = 2(n)(x). With 7 (x) = Alx)(x) for

= > v EEB

nZz0 mod jj
we calculate by using (3) (which means that A(px) = a(x)A(x))

D(7)(x) = ®(m1)(x) = n(px) — alx)yi(x) =
= A(px)ih(px) — a(x)A(x)p(x) =
a(D)AE)(P(px) = (x) =aA(x) Y (" = Dihux".
n#0modjjy
By similar calculations and considerations as before and by using
the facts that the product a(x)A(x) =1 mod x and p" — 1 # 0 for
n #Z 0 mod j, we see that

b(x) = ®()(x) = D "+

n>1
n#0mod o

+ Z n ar r>1?¢m|m<n miomOdJO)

n>1
n=0modjg

i.e. (12) holds.
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7. Analytic Solutions

We are now looking for the solutions of (L), (L), (1), and (7) which
are holomorphic in a neighborhood of x = 0. In this part we always
assume that a(x) = 1 mod x.

Remark 33. Assume that a(x) and b(x) are holomorphic in a
neighborhood of x = 0. If a(x) = 1 mod x, then from (2) or (8') we
derive that a solution p(x) of (Ly) or (L), respectively, is convergent
in a neighborhood of x = 0 if and only if the projection ", ~ @, X7
to (C[[x]])(o) is holomorphic. -

Corres)ponding results can be obtained for projections into
(Cl«] from (2,4) and for a(x) = p* mod x from (2,4y,ko).

More interesting are the solutions of the other two equations: Let
us start with the “cyclic” equation (1) which describes the case when
(L) has a non-zero solution.

Proposition 34. 1. A solution a(x) of (1) is holomorphic at x = 0 if
and only if in the representation (9) of a(x) the series Znﬂ)mod jo YnX" s
convergent for |x| < r, with some r > 0.

2. A solution a(x) of (1) is holomorphlc atx = 0ifand only ifin the
decomposition a( ) =20 ' a® (x) witha® (x) € ((C[[x]]) the series
al(x),...,a" 1 (x) are convergent.

Proof. 1. is immediately clear.
2. If a(x) is convergent for |x| < r, then it is absolutely convergent
for |x| < r, and so are the partial series a®(x). Assume conversely

that for D(x),...,a% D (x) are convergent, i.e.
holomorphic functions at x = 0. Then all ossible a®m(x), 0 <
m < jo, for which a(x) = a®"(x) + ZJO “)(x) are (formal) solu-

tions of (1), have the form

adOm(x) = pm (1 + Z R™ (arlk < n, k # Omodjo)x">

n=0modjy
for0 < m < jo, with polynomials R""). They are exactly the solutions of

Jo—1

X0+ 3 PaV(x),..a X —1=0  (34)
=0

derived from (27). From the latter it follows by the theorem of
Puiseux (cf. [12] pages 50-55, or [8] pages 98—104) that the series
a7 (x) are all convergent, since the coefficients P,(a"(x),...,
aY~1)(x)) are convergent power series. Another way of proving this,
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is to observe that
Jo—1

X043 " P0,...,00X" = 1=0
r=0

(derived from (34) by setting aV(x) = -+ =alo~V(x) = 0) has
exactly jo different solutions 1, p, . .., p~!. Therefore, by the implicit
function theorem, there exist exactly j, different at x =0 holo-
morphic solutions w!”(x) of (34) such that wl”(0) = p™ for
0 < m < jy. These solutions have Taylor expansions
W) = 74 3 e,
n>1
which, considered as formal series, are also jy distinct solutions of

(34) and hence of (1) in the field of formal Laurent series. Hence they
must coincide with the solutions constructed before, i.e.

a0 (x) = wil(x) e C[x].

Consequently, each a?)"(x) is convergent, and so each a(x) of the
form

Jo—1
a(O),M(x) + Za(k) (x)
k=1
for 0 < m < jj is convergent. I

Now we turn to (7) characterizing the existence of solutions of (L).
We assume here that a(x) = 1 mod x is a solution of (1) holomorphic
at x = 0.

Theorem 35. Under the previous assumptions the solution b(x) of (7)
is convergent if and only if bV (x),...,bY~(x) are convergent
power series.

Proof: Replacing b(x) in (7) by its decomposition Z’k";ol b™) (x) we get
K= bl RS M)

7 ‘ 7 ,
=0 [[i—oalpix) =5 Il=oalp’x)

_joi (joz_:lpi&)bm(x) _
oalpix)

=0 Llj=p @

Jo—1 1 Jo—1 [ jo—1 pé‘k
(Y )pO _ ).
<g=o Hf_oa<pfx>> <>+;<;Hf_oa<pfx>> ()
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Since the coefficient ap = 1, the reciprocal of a(p/x) exists for
j=0,...,jo— 1 in C[x]. These series 1/a(p’x) are convergent in a
neighborhood of x = 0, hence also

jo—1
Jo 1

ax) = Z

=0 [ [i=oalp’x)

is a convergent series. Moreover, the reciprocal of «(x) belongs
to C[x], since a(x) =jo mod x, and it is also a convergent power
series. I

Remark 36. Another proof of Theorem 35 can be derived from
Theorem 30. Here we assume more generally that a(x) is holo-
morphic at x =0 and a(x) = p® mod x for some ko € {0, ...,
Jo — 1}, and we prove that a solution b(x) of (7) is convergent if
and only if b®(x) is convergent for all k # k. Expanding
det(A,)(x),b(x)) = 0 with respect to the last column, we derive that

Jo—1
+ (detA )+ > PilaO(x),...,a" D (x), p)b (X)> =0,

k=0
k#kg

where Py are polynomials in a® (x), ..., a% " (x) and p. Hence
Jo—1

b)) = —[detA’(x ZPk ,a" D (x), p)b® (x)

k#ko
is convergent, since the reciprocal of det A’(x) is a convergent power
series.

8. The General Linear Functional Equation (Lp)

Let S(x) =x+ $ox% + - - - be a formal power series as in Theorem 1
such that p(x) = S~!(pS(x)). The proof of the next lemma is straight
forward, hence it is omitted.

Lemma 37. For all k € N the equality
STH(P'S(x) = Pt (x)
holds.

All formal power series y(x) belonging to ((C[[x]])(k) for some k € Z
satisfy (px) = p*v(x). In the general situation of substituting p(x)
instead of px we derive
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Lemma 38. Let ~(x) € C[[x]] If k denotes an integer such that
0 < k < jo, then 1(p(x)) = pA3(x) if and only if

X) =) Ay ST, (35)

>0

where ¥, are the coefficients of the series 7 := yo S\
Proof: From ~(p(x)) = pkv(x) it follows that y(S~!(pS(x)) =
When putting y = S(x) and y=~0S"" we get J(py) =
which is equivalent to (y) = 3= -0 Vi1, yktio,

Hence, (708 1) (S(x)) = 320 Vewso [’S( )]F% which is the same

as (33). O

The necessary and sufficient condition for the existence of non-
trivial solutions of the homogeneous linear functional equation and its
general solution are described in

Theorem 39. The homogeneous linear functional equation

p(p(x)) = a(x)p(x) (Lpn)

has non-trivial solutions if and only if

H a(p'(x) (36)

=0
If ap = p* and if (36) is satisfied, then the general solution p(x) of

(Lpy) is given by .
Jo—1
o= (S M| o
=0

where «y(x) is an arbitrary solution of v(p(x)) = p*v(x), hence of

the form (35).
Proof: From Theorem 1 it follows that (Lp;,) has non-trivial solutions
if and only if
@(py) = a(y)e(y)

has non-trivial solutions, where ¢ = ¢ o S~! and y = S(x). According
to (1) the necessary and sufficient condition for the existence of non-
trivial solutions @(y) is given by

Jo—1 ,

a(p’y) =1
=0
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which is the same as

whence
Jo—1

[Tas " (o"S(x)) = 1.
/=0

Since S~!(p*S(x)) = p*(x), we derive
Jo—1

[T e’ ) =

=0
The general solution of the transformed homogeneous linear func-
tional equation where ay = p* (which is equivalent to ay = p*) is
given by Theorem 10 as

Jo—1 n—1 -1
[Z P o H a p Y ] Jo Z Sbfjo-*-koy[]oJrko'
n=0 >0

Replacing y by S(x), by p oS! and aby ao S~! we get (37). [

Applying similar methods as in the last proof, it is possible to show
that the next theorem holds.

Theorem 40. Assume that (Lpp) has non-trivial solutions. The
inhomogeneous linear functional equation (Lp) has solutions if and

only if _
=) (38)
k=0 Hjl'(:o a(p/(x))

If ag = p* and if (36) and (38) are satisfied, then the general solution
©(x) of (Lp) is given by

[Zp—nkona ] .
S TTag ) S 20 @) 20
( ;” U . gn?_oaw))) 9

where y(x) is an arbitrary solution of y(p(x)) = p*o~y(x), hence of the
form (35).
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