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Abstract

We determine the general continuous solution of Gotab—Schinzel functional equation
assumed to hold on an interval containing 0.
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1. Introduction

In the present paper we are going to present continuous solutions of a
conditional Gotab—Schinzel equation. More exactly we are interested
in solving the following equation

o +yf(x) =fXF (), (GS)

which holds for every x,y from a real interval / containing 0, and the
unknown continuous function f is defined on a real interval

Iy = {x+yf(x) :x,y €I}

Analogous questions for some specific intervals / were treated by J.
Aczél and J. Schwaiger in [1], and by L. Reich in [3] and [4].

Note that a part of our work is to determine intervals I and Ir. Let us
also observe that obviously / C Iy and therefore (GS) is not an empty
condition.
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As a main tool in our considerations we will use some of our results
from [5]. That paper concerns the following generalization of a func-
tional equation of N. Abel

P(xh(y) +yg(x)) = p(x) +o(v), x€l, (A)
where all the four functions are unknown, as well as the real interval
I which is assumed to satisfy only the requirement O € /. Solving (A)
we reduced it to a slightly less general equation

V(xF(y) +yG(x)) = W(x) + ¥(y) (A')

and in particular we obtained the following (cf. [5, Propositions 2.7
and 2.9)).

Proposition 1.1. If (U, F,G) is a continuous solution of (A') which
satisfies

¥U(0)=0, FO)=1, G(0)#0,
then there exists a ¢ € R such that
G(x) = F(x) + cx (1.1)
for every x € I.

2. Golab-Schinzel Equation

If we set x=y =0 in (GS) then we get f(0) € {0,1}. The case
f(0) = 0 yields the trivial solution f = 0 which is easily seen when we
put y = 0 into (GS). Let us assume therefore that f(0) = 1. Then by
continuity, f is positive in an interval J containing 0. It follows from
(GS) that also its lefthand side is positive whenever x,y € J. Thus, if
x,y € J, we can take logarithms of both sides of (GS). Denoting
U :=Inf, F:= 1, and G = f we see that (GS) restricted to J implies
(A") for the above defined functions, which holds for all x,y € J. We
can make use of Proposition 1.1 and thus from (1.1) we infer that there
exists a constant ¢ € R such that

fx)=14cx (2.1)
holds for all x € J.

Actually what we have proved is that f is given by (2.1) on any
interval containing O and such that f is positive on this interval. In
particular, if we look for those solutions of (GS) which are positive on
I then we see that they are given by (2.1). Obviously, in this case
I C ¢(—00,1) if ¢ # 0. Here and in the sequel ¢ stands for =!. We
have also

I={x+y+cxy: x,yel} (2.2)
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and Iy C ¢(—o0, 1). Moreover, it easily follows from (GS) that f is
given by (2.1) on I;.

Suppose now that 0 € f(I). Then ¢ # 0, and ¢ € I, and f is given by
(2.1) on I N (¢(—o0, 1)). Let us define v : I — R by

Y(x) = x +¢f (x).

Since ~ is continuous, we see that U = ~y(I) is an interval. Consider
two cases.

A. U is a degenerate interval. Then U = {¢} because ¢ = 7(c).
This means that

x+cf(x)=c

for every x € I, or f is given by (2.1) in I. One easily notes that I is
given by (2.2), and f is given by (2.1) in I;.

B. U is a non-degenerate interval. Without loss of generality assume
that ¢ < 0. As we have seen above, ¢ € U. On the other hand

f(v(x) =f(x)f(c) =0

SO

flu=0. (2.3)
Therefore, because f is given by (2.1) at the lefthand side of c,
the interval U has the form U = [¢,y,] or U = [¢,y;) for some
y1 € (¢, 00]. Put

y2 = sup{y1 > : fl[c, 1] = 0}.

We will show that y, > supl. Indeed, suppose to the contrary that

y2 < supl. Then by continuity of f we have f|[c, y»] = 0. Consider the
interval

V={x+yflx):xel}

From (GS) we infer that f|V = 0. Moreover, y, = 0+ y,f(0) and
¢ =7+ y2f(¢) belong to V, whence we infer that V = [¢, y,]. From
the definition of V we get therefore

flx) <0 (2.4)
for every x € I N (y2,00). Fix an xo € I N (y2,00) and consider the
function ¢ : [0,¢] — R given by

p(2) = 2+ x0f(z) = x0 + (1 + cxo)z.

Thus ¢ is an affine function and since f(0) = xo and f(¢) = ¢, we
obtain

90([07 E]) = [E’x()]'
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In particular there exists a z € (0,¢) such that ¢(z) = y,. From (GS),
(2.4) and the already established form of f in I N (—oo,¢) we get

0=/f(2) =f(¢(z)) =f(2)f(x) <O.
This contradiction shows that f|[¢,c0) = 0. Thus f|I is given by

f(x) = max{1 + cx, 0} (2.5)

for every x € I. As a simple consequence of (GS) we obtain that (2.5)
holds also for any x € Iy = {x + yf(x) : x € I}
Let us summarize the above considerations in the following.

Theorem 2.1. Let I be a real interval containing 0. A continuous
function f : I == {x + yf(x) : x,y € I} — R satisfies (GS) for every
x,y € Lifand only if f = O or there exists a constant ¢ € R such that f
is given by (2.1) or by (2.5).

Remark 2.2. If we take / = [0, 00) then it follows from the above
theorem that nontrivial continuous solutions of (GS) which holds for
nonnegative x and y are given either by (2.5) or by (2.1). In the former
case ¢ > 0 and Iy = [0, 00). In the latter one ¢ < 0 is admitted and, if
this is the case, then Iy = R, as it can be seen easily.

Remark 2.3. Suppose that we are looking for continuous solutions of
(GS) which holds for x,y € [0, c0) assuming moreover that they fulfill
the condition x + yf(x) > 0 for every x,y € [0,00). Then from the
above theorem it follows that either f = 0 or f is given by (2.1) with
c¢>0 or f is given by (2.5) with ¢ < 0. In both cases we have
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