Anzeiger Abt. II (2000) 137: 11-15

Anzeiger

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2000 Printed in Austria

A Conditional Gołąb-Schinzel Equation

Von

M. Sablik

(Vorgelegt in der Sitzung der math.-nat. Klasse am 16. November 2000 durch das w. M. Ludwig Reich)

Abstract

We determine the general continuous solution of Gołąb–Schinzel functional equation assumed to hold on an interval containing 0.

Mathematics Subject Classification (2000): 39B12, 39B22, 39B52.

1. Introduction

In the present paper we are going to present continuous solutions of a conditional Gołąb–Schinzel equation. More exactly we are interested in solving the following equation

$$f(x + yf(x)) = f(x)f(y),$$
 (GS)

which holds for every x, y from a real interval I containing 0, and the unknown continuous function f is defined on a real interval

$$I_f = \{x + yf(x) : x, y \in I\}.$$

Analogous questions for some specific intervals *I* were treated by J. Aczél and J. Schwaiger in [1], and by L. Reich in [3] and [4].

Note that a part of our work is to determine intervals I and I_f . Let us also observe that obviously $I \subset I_f$ and therefore (GS) is not an empty condition.

12 M. Sablik

As a main tool in our considerations we will use some of our results from [5]. That paper concerns the following generalization of a functional equation of N. Abel

$$\psi(xh(y) + yg(x)) = \varphi(x) + \varphi(y), \quad x \in I,$$
 (A)

where all the four functions are unknown, as well as the real interval I which is assumed to satisfy only the requirement $0 \in I$. Solving (A) we reduced it to a slightly less general equation

$$\Psi(xF(y) + yG(x)) = \Psi(x) + \Psi(y) \tag{A'}$$

and in particular we obtained the following (cf. [5, Propositions 2.7 and 2.9]).

Proposition 1.1. If (Ψ, F, G) is a continuous solution of (A') which satisfies

$$\Psi(0) = 0$$
, $F(0) = 1$, $G(0) \neq 0$,

then there exists a $c \in \mathbb{R}$ such that

$$G(x) = F(x) + cx \tag{1.1}$$

for every $x \in I$.

2. Gołąb-Schinzel Equation

If we set x = y = 0 in (GS) then we get $f(0) \in \{0, 1\}$. The case f(0) = 0 yields the trivial solution f = 0 which is easily seen when we put y = 0 into (GS). Let us assume therefore that f(0) = 1. Then by continuity, f is positive in an interval J containing 0. It follows from (GS) that also its lefthand side is positive whenever $x, y \in J$. Thus, if $x, y \in J$, we can take logarithms of both sides of (GS). Denoting $\Psi := \ln f$, F := 1, and G = f we see that (GS) restricted to J implies (A') for the above defined functions, which holds for all $x, y \in J$. We can make use of Proposition 1.1 and thus from (1.1) we infer that there exists a constant $c \in \mathbb{R}$ such that

$$f(x) = 1 + cx \tag{2.1}$$

holds for all $x \in J$.

Actually what we have proved is that f is given by (2.1) on any interval containing 0 and such that f is positive on this interval. In particular, if we look for those solutions of (GS) which are positive on I then we see that they are given by (2.1). Obviously, in this case $I \subset \overline{c}(-\infty,1)$ if $c \neq 0$. Here and in the sequel \overline{c} stands for $\frac{-1}{c}$. We have also

$$I_f = \{x + y + cxy : x, y \in I\}$$
 (2.2)

and $I_f \subset \overline{c}(-\infty, 1)$. Moreover, it easily follows from (GS) that f is given by (2.1) on I_f .

Suppose now that $0 \in f(I)$. Then $c \neq 0$, and $\overline{c} \in I$, and f is given by (2.1) on $I \cap (\overline{c}(-\infty, 1))$. Let us define $\gamma : I \to \mathbb{R}$ by

$$\gamma(x) = x + \overline{c}f(x).$$

Since γ is continuous, we see that $U = \gamma(I)$ is an interval. Consider two cases.

A. U is a degenerate interval. Then $U = \{\overline{c}\}$ because $\overline{c} = \gamma(\overline{c})$. This means that

$$x + \overline{c}f(x) = \overline{c}$$

for every $x \in I$, or f is given by (2.1) in I. One easily notes that I_f is given by (2.2), and f is given by (2.1) in I_f .

B. U is a non-degenerate interval. Without loss of generality assume that c < 0. As we have seen above, $\overline{c} \in U$. On the other hand

$$f(\gamma(x)) = f(x)f(\overline{c}) = 0$$

SO

$$f|U=0. (2.3)$$

Therefore, because f is given by (2.1) at the lefthand side of \overline{c} , the interval U has the form $U = [\overline{c}, y_1]$ or $U = [\overline{c}, y_1)$ for some $y_1 \in (\overline{c}, \infty]$. Put

$$y_2 = \sup\{y_1 > \overline{c} : f|[\overline{c}, y_1] = 0\}.$$

We will show that $y_2 \ge \sup I$. Indeed, suppose to the contrary that $y_2 < \sup I$. Then by continuity of f we have $f|[\overline{c}, y_2] = 0$. Consider the interval

$$V = \{x + y_2 f(x) : x \in I\}.$$

From (GS) we infer that f|V=0. Moreover, $y_2=0+y_2f(0)$ and $\overline{c}=\overline{c}+y_2f(\overline{c})$ belong to V, whence we infer that $V=[\overline{c},y_2]$. From the definition of V we get therefore

$$f(x) < 0 \tag{2.4}$$

for every $x \in I \cap (y_2, \infty)$. Fix an $x_0 \in I \cap (y_2, \infty)$ and consider the function $\varphi : [0, \overline{c}] \to \mathbb{R}$ given by

$$\varphi(z) = z + x_0 f(z) = x_0 + (1 + cx_0)z.$$

Thus φ is an affine function and since $f(0) = x_0$ and $f(\overline{c}) = \overline{c}$, we obtain

$$\varphi([0,\overline{c}]) = [\overline{c},x_0].$$

14 M. Sablik

In particular there exists a $z \in (0, \overline{c})$ such that $\varphi(z) = y_2$. From (GS), (2.4) and the already established form of f in $I \cap (-\infty, \overline{c})$ we get

$$0 = f(y_2) = f(\varphi(z)) = f(z)f(x_0) < 0.$$

This contradiction shows that $f|[\overline{c}, \infty) = 0$. Thus f|I is given by

$$f(x) = \max\{1 + cx, 0\} \tag{2.5}$$

for every $x \in I$. As a simple consequence of (GS) we obtain that (2.5) holds also for any $x \in I_f = \{x + yf(x) : x \in I\}$.

Let us summarize the above considerations in the following.

Theorem 2.1. Let I be a real interval containing 0. A continuous function $f: I_f := \{x + yf(x) : x, y \in I\} \to \mathbb{R}$ satisfies (GS) for every $x, y \in I$ if and only if f = 0 or there exists a constant $c \in \mathbb{R}$ such that f is given by (2.1) or by (2.5).

Remark 2.2. If we take $I = [0, \infty)$ then it follows from the above theorem that nontrivial continuous solutions of (GS) which holds for nonnegative x and y are given either by (2.5) or by (2.1). In the former case $c \ge 0$ and $I_f = [0, \infty)$. In the latter one c < 0 is admitted and, if this is the case, then $I_f = \mathbb{R}$, as it can be seen easily.

Remark 2.3. Suppose that we are looking for continuous solutions of (GS) which holds for $x, y \in [0, \infty)$ assuming moreover that they fulfill the condition $x + yf(x) \ge 0$ for every $x, y \in [0, \infty)$. Then from the above theorem it follows that either f = 0 or f is given by (2.1) with $c \ge 0$ or f is given by (2.5) with c < 0. In both cases we have $I_f = [0, \infty)$.

Acknowledgement

The author is indebted to Professor L. Reich for the encouragement to write this paper.

References

- [1] Aczél, J., Schwaiger, J.: Continuous solutions of the Gołąb-Schinzel equation on the nonnegative reals and on related domains. Österr. Akad. Wiss. Math.-Naturw. Kl. Sitzungsber. II. Sb. Österr. Akad. Wiss. 208, 171–177 (1999).
- [2] Gołab, S., Schinzel, A.: Sur l'équation fonctionnelle f(x+yf(x))=f(x)f(y). Publ. Math. Debrecen **6**, 113–125 (1959).
- [3] Reich, L.: Über die stetigen Lösungen der Gołab-Schinzel-Gleichung auf R_{≥0}. Österr. Akad. Wiss. Math.-Naturw. Kl. Sitzungsber. II. Sb. Österr. Akad. Wiss 208, 165–170 (1999).

- [4] Reich, L.: Über die stetigen Lösungen der Gołąb-Schinzel-Gleichung auf \mathbb{R} und auf $\mathbb{R}_{\geq 0}$. To appear in Sb. Österr. Akad. Wiss., math.-nat. Kl.
- [5] Sablik, M.: A generalized functional equation of Abel (submitted).

Author's address: Prof. Dr. M. Sablik, Institute of Mathematics, Silesian University, Bankowa 14, 40 007 Katowice, Poland.